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The causes of type 2 diabetes are extremely complex. A great deal of research has 
been conducted regarding genetic and behavioral causes. Newer avenues of 
research have begun to consider how certain environmental factors explain the 
prevalence of type 2 diabetes. This study examines two possible environmental 
explanatory variables. Pollution, specifically particulate matter (PM2.5), and 
elevation are modeled in a multivariate linear regression analysis along with two 
known behavioral variables: obesity and inactivity. The case study area was the 
Commonwealth of Virginia, and the aggregation was at the county level. 
Although recent research identified a relationship between the prevalence of type 
2 diabetes and PM2.5 pollution, this study did not show significant results. 
Elevation also did not have a significant influence on diabetes prevalence in 
Virginia. 
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Introduction 

The prevalence of diagnosed diabetes in the United States continues to increase. In 2010, 

the number of people diagnosed with diabetes was estimated at 18.8 million, with approximately 

seven million undiagnosed cases (Geiss et al., 2012). Between the years 1995 and 2010, the 

number of states with a diabetes prevalence greater than 6% increased from three states in 1995 

to all 50 states in 2010 (Geiss et al., 2012). Also in 2010, six states, along with Puerto Rico, had 

a diabetes prevalence greater than 10% (Geiss et al., 2012). Individuals with type 2 diabetes are 
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usually able to produce a certain amount of insulin, but not enough to keep sugar levels normal. 

The acute complications of type 2 diabetes include ketoacidosis, hyperosmolarity, and 

hypoglycemia.  

Saudek, Rubin, and Shump (1997) explain that ketoacidosis occurs when there is a deficit 

of insulin in the bloodstream, causing the body to break down fat cells for needed energy. This 

breakdown of fat cells can cause ketones to build up in the bloodstream, resulting in 

ketoacidosis, which at high levels can lead to coma. Hyperosmolarity occurs when the person’s 

blood sugar level reaches over 1000mg/dl, and causes the blood to thicken, resulting in coma. 

Hypoglycemia results when blood glucose levels drop below 60 mg/dl on average. Causes can be 

too much insulin or oral medication, too little food, and/or too much exercise. As the body and 

brain need a certain amount of sugar to function, untreated cases can result in coma. These acute 

complications can lead to death if left untreated. Long-term complications can include damage to 

the eyes (retinopathy), damage to the kidneys (nephropathy), and damage to nerves (neuropathy). 

Also, arteriosclerosis (the hardening of the arteries) occurs when plaques of cholesterol develop 

on the inner surface of arteries. Blood flow can be blocked, resulting in stroke or heart attack. 

Untreated or poorly treated diabetes can be a cause of arteriosclerosis (Saudek et al., 1997).  

 Ethnicity, race, and heredity are well-known genetic factors that influence type 2 diabetes 

development. Furthermore, behavioral factors such as overeating and lack of exercise play a 

significant role in diabetes prevalence. Research on diabetes risk factors suggests that type 2 

diabetes diagnoses usually occur in individuals older than 40, who are overweight or obese, have 

a low activity lifestyle, and have a family history of the illness (Geiss et al., 2012). Certain race 

and ethnic groups, including African Americans, Hispanics, and Native Americans have a higher 

prevalence of type 2 diabetes. Obesity, however, has been found to be the most accurate 

predictor of type 2 diabetes (Saudek et al., 1997). Between 2009 and 2012, the U.S. age-adjusted 

diagnosed and undiagnosed prevalence of diabetes for individuals 20 years and older was 11.7% 

(Geiss et al., 2012).  

 More recently, researchers have attempted to understand the role of environmental factors 

in diabetes prevalence. Particulate matter (PM2.5) exposure from the environment and elevation 

are two that have been examined. Particulate air pollution is a mixture of solid and liquid matter 

differing in origin, composition, and size. PM2.5 is considered fine particulate matter and has a 

particle diameter size of less than 2.5µm (Pope, 2000). The small size of these particles allows 
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them to penetrate deeper into the lungs than larger particles. Larger particles are often the result 

of natural processes such as blowing dust or soils. The PM2.5 size particles are often industrial in 

origin, resulting from processes in different industries involving combustion, which produces 

sulfate and nitrate particles (Pope, 2000). Increased exposure levels of PM2.5 has been found to 

be associated with an increase in the inflammation of insulin responsive organs (Chien, Alamgir, 

& Yu, 2015). Brook et al. (2013) found that exposure to PM2.5 resulted in a decrease of insulin 

sensitivity. Another avenue of research examined the relationship between elevation and diabetes 

prevalence. Woolcott et al. (2014) examined the prevalence of diabetes and obesity in high and 

low elevation counties in the United States and found that counties at high elevations had less 

diabetes prevalence than counties at low elevations. 

 The causes of type 2 diabetes are extremely complex. A great deal of research has 

examined the genetic and behavioral components that lead to type 2 diabetes. However, less 

work has been dedicated to understanding the role that the environment plays, and thus, more 

research is warranted. This study examines the association between type 2 diabetes prevalence 

and environmental factors, while controlling for known behavioral factors. Two models utilizing 

ordinary least squares multiple regression were developed to explore how PM2.5 and elevation 

might affect the prevalence of type 2 diabetes. This ecological-level case study was conducted 

using county-level data from Virginia.  

Literature Review 

Numerous researchers have studied the demographic and behavioral causes of type 2 

diabetes. Barker, Kirtland, Gregg, Geiss, and Thompson (2011) examined the geographic 

distribution of diabetes by U.S. counties in an area the authors describe as a “Diabetes Belt,” 

located in parts of the Southeast and Appalachian regions. The study evaluated how this region 

differed from the rest of the United States, finding that counties in the Diabetes Belt had higher 

obesity and lower activity levels, as well as higher percentages of non-Hispanic African 

Americans and greater numbers of people 65 years and older. Menke, Rust, Fradkin, Cheng, and 

Cowie (2014) carried out a series of cross-sectional studies that examined trends in the 

prevalence of diabetes based on race/ethnicity, age, and body mass index (BMI). They found that 

between the years of 1976 and 1980, and between 2007 and 2010, diabetes prevalence increased 

in men from 6.2% to 9.6%, but decreased slightly in women from 7.6% to 7.5%. 
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 Patel, Bhattacharya, and Butte (2010) developed the Environmental Wide Association 

Study (EWAS). While controlling for age, sex, ethnicity, socioeconomic status (SES) and BMI, 

the study conducted numerous cross-sectional studies with 266 different environmental factors 

that could possibly be associated with the prevalence of type 2 diabetes. Logistic regression 

models were utilized with data obtained from the National Health and Nutrition Examination 

Survey (NHANES). Researchers found this study method was able to isolate environmental 

factors with significant effects on type 2 diabetes. Among the 266 environmental factors, there 

were some that were notably significant. Although already known to increase the type 2 diabetes 

risk, this study confirmed that factors such as carotenes and polychlorinated biphenyls (PCBs) 

increase the risk of type 2 diabetes. Also, a component of vitamin E, c-tocopherol, was found to 

increase diabetes risk. Heptachlor epoxide, a pesticide discontinued for most uses in the 1980s, is 

still found in the environment, and was previously found to cause type 2 diabetes in pesticide 

applicators. This study found a broad association of heptachlor levels and type 2 diabetes in the 

general public using the NHANES data.  

More recently, researchers have examined the relationship between PM2.5 levels and the 

prevalence of diabetes. Chien et al. (2015) studied the United States at the county level and 

found a geographical association between PM2.5 levels and diabetes prevalence. Certain regions 

of the United States were more at risk than others, including the South, Central, and Southwest. 

Zheutlin, Adar, and Park (2014) performed an ecological analysis on the association between 

carbon dioxide (CO2) emissions and the prevalence of diabetes in the United States. However, 

instead of finding a connection between diabetes prevalence and CO2 emissions, the results 

suggested ambient PM2.5 was associated positively with diabetes prevalence.  

 Pearson, Bachireddy, Shyamprasad, Goldfine, and Brownstein (2010), utilizing 

multivariate regression models, examined county-level data for the United States and found that 

increased PM2.5 levels, while controlling for diabetes risk factors, were associated with an 

increase in diabetes prevalence. Also, through animal studies, researchers have found that 

negative response to PM2.5 exposure did not occur in lean mice. Mice with diet-induced obesity 

did respond to increased PM2.5 exposure with insulin resistance related to chronic inflammation 

as a mechanism. The authors utilized these laboratory experiments in mice to gain insight into 

the association between urbanization and type 2 diabetes in humans (Sun et al., 2009). Brook et 
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al. (2013) found that sub-acute exposure to PM2.5 resulted in a worsening sensitivity to metabolic 

insulin in humans. 

 Researchers in the United States have explored associations of both prevalent and 

incident type 2 diabetes with exposure to PM2.5 and NO2, as well as proximity to major 

roadways. After analysis, the researchers found that higher long-term exposure to PM2.5 and NO2 

had a significant association with the prevalent cases of type 2 diabetes ascertained at the start of 

the study (Park et al., 2015). 

Other researchers have examined the relationship between elevation and diabetes 

prevalence in the United States. Woolcott et al. (2014) found that counties at high elevations had 

less diabetes prevalence than counties at low elevations, and obesity did not explain this inverse 

relationship. Likewise, Voss, Masuoka, Webber, Scher, and Atkinson (2013) found that the 

prevalence of obesity, a major risk factor for type 2 diabetes, is inversely associated with 

elevation and the degree of urbanization while controlling for behavior, demographic factors, and 

temperature. 

Method 

Regression analysis is utilized in research to explore relationships between variables. One 

variable might influence or affect another, or variables might be tied to each other because of an 

existing functional relationship. The independent variables are utilized to explain changes in the 

dependent variable. 

This study used an ordinary least squares (OLS) multivariate regression for two separate 

models. Since research indicated a possible connection between PM2.5 and type 2 diabetes, an 

OLS regression was performed with type 2 diabetes as the dependent variable and PM2.5 and 

obesity as the two independent variables. The second OLS regression model looked at the 

relationship between type 2 diabetes and elevation, with obesity also as a control factor as an 

already-known contributor to type 2 diabetes. 

The main objective of this analysis was to determine how much variation in type 2 

diabetes prevalence can be attributed to obesity and/or PM2.5 in the first model, and how much in 

the second model can be attributed to obesity and elevation. The regression analysis generates 

standardized regression coefficients, also known as beta values, for each independent variable. 

These indices show the relative strength of the independent variable contributing to the variance 

in the dependent variable. Also, for each model, a coefficient of multiple determination (R2) is 
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calculated. This measures the ratio of variation in the dependent variable. The beta values 

undergo a hypothesis test with probabilities calculated to determine whether results are 

significant. 

Age-adjusted type 2 diabetes prevalence county level data for 2012 were downloaded 

from the U.S. Centers for Disease Control and Prevention (CDC) website, as well as county-

level measures for obesity prevalence and percent inactivity (CDC Diabetes County Data, n.d.) . 

PM2.5 data, which are measured in micrograms per liter cubed (µg/L3) and averaged for the 2011 

year, were obtained from the CDC Wonder Database. 

 
Figure 1. Type 2 diabetes prevalence; source: CDC diabetes county data indicators 

(https://www.cdc.gov/diabetes/data/countydata/countydataindicators.html). 
 

A shapefile of Virginia with county and city boundaries was utilized for the analysis. 

Virginia county and city jurisdictions are different from other states; certain cities are 

independent with their own court systems and have the same authority as counties. For this 

study, the city of Bedford was omitted from the analysis because it was missing from the 

shapefile data. This left 133 county/city observations in the dataset. A raster elevation layer was 

obtained from the U.S. Geological Survey (USGS) National Map (http://nationalmap.gov). The 

42 individual 1 x 1 degree data tiles were stitched together to create a single seamless elevation 

data layer. This layer was re-projected to the Virginia Lambert projection and re-sampled from a 
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one arc-second cell resolution to a 30-meter cell resolution using a bilinear interpolation. It was 

processed through ArcGIS utilizing a zonal statistics method, which summarized elevation 

values within counties and cities of the Virginia shapefile. Average Virginia county elevations 

were assigned to each county. All five data sources were consolidated in a single file via a table 

join operation. Figure 1 shows the geographic distribution of type 2 diabetes prevalence in 

Virginia, and Figure 2 shows the distribution of the four explanatory variables.  

 

 
Figure 2. Four explanatory variables are mapped for Virginia counties and independent cities: 
(A) Mean elevation in meters (source: USGS National Map); (B) Obesity prevalence (%) for 

2012 (source: CDC diabetes county data indicators); (C) PM2.5 levels (µg/L3) for 2011 (source: 
CDC Wonder Database); (D) % inactivity for 2012 (source: CDC diabetes county data). 

 

 ArcMap software was used to calculate the OLS multiple regression for the relationship 

between environmental factors and the prevalence of type 2 diabetes in Virginia counties and 

independent cities. The explanatory independent variables were obesity, inactivity, PM2.5, and 



ENVIRONMENTAL EFFECTS ON TYPE 2 DIABETES	
	

38	

elevation. Prior to the regression, the dependent variable (type 2 diabetes) and the explanatory 

variables were tested for correlation via Pearson’s correlation coefficient (r). Obesity and 

inactivity measures were used as a control for the already-established behavioral variables. 

(Table 1 contains the correlation matrix.)  

Both the elevation/PM2.5 pair and the inactivity/obesity pair had a borderline high r value 

of .796 and .714, respectively. High r values for the environment and behavioral variables 

suggest multicollinearity, and led to the development of two separate regression models to 

analyze this dataset. Because of the multicollinearity between the obesity and inactivity 

variables, it was decided to remove the inactivity variable and use only obesity as the control for 

the behavior factor. The first model paired obesity and PM2.5, and the second model paired 

obesity and elevation as explanatory variables. Moran’s I was performed on both models to test 

the residuals for autocorrelation (Moran, 1950). If there is statistically significant clustering, the 

models could be misspecified, indicating that there is a key explanatory variable missing from 

the model.  

 

Table 1 

Correlation matrix (r) 

Variable 

Type 2 

Diabetes 

Prev 

Obesity Inactivity PM2.5 Elevation 

Type 2 

Diabetes 

Prev 

1 .733 .693 -.38 -.197 

Obesity .733 1 .714 -.275 -.073 

Inactivity .693 .714 1 -.088 .13 

PM2.5 -.38 -.275 -.088 1 .796 

Elevation -.197 -.073 .13 .796 1 

 

 After performing the OLS regression, the author utilized a Geographically Weighted 

Regression (GWR) to explore whether the relationships among variables vary geographically 

across Virginia. Wheeler and Páez (2010) explained that GWR allows a regression model to be 
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fitted at the geographic location of each observation in the dataset. This model estimates a beta 

coefficient as well as a R2 value at each location, whereas in OLS regression, there is only one 

global, fixed value. 

Results 
 The first model developed consisted of type 2 diabetes as the dependent variable, and 

PM2.5 and obesity as the independent variables. The adjusted R2 for this model was significant 

(R2 = 0.533, p < 0.001). Table 2 contains the regression results for this first model. 

 

Table 2 

Regression results (PM2.5/obesity) 

Variable Coefficient 

Robust 

Std. 

Error 

Robust t 

Statistic 

Robust 

Probability 

Constant 3.0455 3.057 0.996 .321 

PM2.5 -0.142 0.231 -0.614 .54 

Obesity 0.296 0.026 11.441 < .001 

 

 For the models to be valid in OLS regression, certain assumptions need to be met. First, 

the relationships between the independent variables and the dependent variable need to be linear. 

Second, the models need to be properly specified by including all explanatory variables relevant 

to the analysis. A misspecified model will be missing a key explanatory, independent variable. 

To determine whether the model is misspecified, the residuals are tested for spatial 

autocorrelation utilizing the Moran’s I statistic. This tests regression residuals for statistically 

significant clustering, which could result in invalid statistical inference. The variance of the error 

residuals is also examined. For the model to be valid, the residual variance should not exhibit 

heteroscedasticity, which means the variances are unequal. The Koenker (BP) Statistic tests the 

residuals for heteroscedasticity. A statistically significant result confirms the residuals have 

unequal variance. A solution for this issue is to consult the robust probabilities, which take this 

issue into account. The final residual assumption looks at whether or not the standardized 

residuals are normally distributed. This can be performed visually using a histogram and also by 
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utilizing the Jarque-Bera test. A statistically significant result (p < .05) means the residuals are 

not normally distributed and that the model predictions are biased. 

The probabilities for the PM2.5 variable were not significant, whereas the obesity variable 

was significant. This model was not able to confirm that higher rates of PM2.5 were associated 

with a higher prevalence of diabetes. The Jarque-Bera test probability was not significant; 

therefore, the residuals were normally distributed. The Koenker (BP) Statistic yielded a 

significant result, indicating that the residuals exhibit heteroscedasticity. The Moran’s I value 

statistic was .534, indicating that the regression residuals were randomly distributed. The robust 

probabilities were utilized because of the heteroscedasticity in the residuals. Although this model 

was valid, it did not confirm previous research findings that higher rates of PM2.5 were associated 

with higher diabetes prevalence. The joint Wald statistic probability indicated that the overall 

model was significant (p < .001). The adjusted R2 value was .533, indicating this model explains 

approximately 53% of the variance in the prevalence of type 2 diabetes. 

 

Table 3 

Regression results (elevation/obesity) 

Variable 

B-

coefficient 

Robust 

Std. 

Error 

Robust 

t 

statistic 

Robust 

Probability 

Constant 1.251 .714 1.753 .082 

Elevation -0.0002 0.0004 -0.515 .608 

Obesity 0.298 0.026 11.531 < .001 

 

The second model developed examined the relationship between type 2 diabetes and 

elevation while controlling for obesity (Table 3). Again, the probabilities for the obesity variable 

were significant, but the elevation probability was not. Different model validity tests were 

employed. Moran’s I was equal to .135 (p = .508), indicating that the residuals were randomly 

distributed. The Jarque-Bera probability was not significant; therefore, the residuals were 

normally distributed. The Koenker (BP) test yielded a significant result, indicating 

heteroscedasticity. The regression results in Table 3 contain the robust probabilities because of 
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the heteroscedasticity in the residuals. Also, the joint Wald statistic probability is less than .001, 

indicating that the overall model is significant. The adjusted R2 value was .533 for this model, 

also indicating that the model explained approximately 53% of the variance in the dependent 

variable.  

 Figure 3 displays the GWR results, with the beta coefficients for the obesity variable 

varying across space. Each county observation also receives an R2 value. It is of interest that 

there appears to be areas in Virginia where higher and lower beta coefficients cluster. Higher 

values cluster in the far Southwest and the far Southeast regions of Virginia. These areas show 

where the independent variable obesity exhibits a stronger influence on the occurrence of type 2 

diabetes. Figure 4 displays the local R2 values for each county/city jurisdiction. This depicts the 

varying fitness of the model throughout the study area. 

 

  

Figure 3. VA GWR – Local Beta Coefficients Mapped (source: CDC diabetes county data 
indicators). 
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Figure 4. VA GWR – Local R2 values mapped (source: CDC diabetes county data). 
 

 

Discussion 

The two models presented did not confirm that higher rates of PM2.5 or higher mean 

elevations resulted in greater diabetes prevalence. The results from the first model indicated that 

the PM2.5 beta coefficient could not be trusted, as the probability was not significant. Current 

research findings suggest that PM2.5 environmental pollution is related to type 2 diabetes 

prevalence. The second model’s beta coefficient for elevation also could not be trusted because 

of a non-significant p value. Both models showed a strong relationship between type 2 diabetes 

and obesity, with significant results. After determining both models’ validity, obesity accounted 

for about 30% in the variation in type 2 diabetes for both models. This follows the findings in 

numerous other studies and is an established relationship. Tests for the validity of both models 

resulted in model validation with the use of robust probabilities to address the issue of 

heteroscedasticity in the residuals of both models.  

 Limitations of the first model were related to the averaging of PM2.5 levels over space 

and time. Different levels of exposure, when averaged, had a tendency to smooth out the 
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exposure level throughout the 2011 year. Also, high and low exposure regions were smoothed 

from the aggregation to county level data. This smoothing effect might mask high or low areas, 

resulting in less apparent variation.  

 Elevation data, aggregated to county level by interpolation processes, are averages of the 

high and low values. Woolcott et al. (2014) utilized data aggregated to the state level for the US. 

The Virginia county data had an elevation range from sea level to 5,729 feet.  

 Another issue to consider is the “ecological fallacy,” which occurs with data aggregation. 

For the two models presented in this study, individual data is aggregated to the county level and 

results in less variance when compared to the original data. 

 Although this case study of environmental effects on the prevalence of type 2 diabetes in 

the Commonwealth of Virginia did not show a relationship between the two environmental 

factors—PM2.5 and elevation—it did verify the relationship between obesity and type 2 diabetes. 

Future research into other types of pollution and other geographic regions is warranted to explore 

environmental health geography effects on type 2 diabetes. Also, future studies might employ 

GWR further to explore how variations in geography at the local level could affect data results.  
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