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ABSTRACT 
For effective implementation of connected corridor applications, it is imperative to study the characteristics of the high-resolution connected corri-
dor data streams leveraged in smart city applications. In a previous effort, a smart city application – real-time corridor data-driven traffic simulation 
model, i.e., Digital Twin – is developed. Investigation of the corridor field volume data revealed the presence of data gaps. To address these gaps, 
deep Long Short-Term Memory (LSTM) Recurrent Neural Network univariate and multivariate volume imputation models are developed. In this 
paper, the impact of the developed model imputations on the digital twin generated travel times are investigated. Simulation runs are conducted for 
typical and atypical traffic, for three volume input cases: base (original volumes), univariate model imputations, and multivariate model imputa-
tions. For the given methodology it was seen that: 1) the travel times generated using multivariate imputations are the closest to that generated 
using base data, 2) the impact of imputations on travel times is focused on congested routes, and 3) the impact on travel time is minimal despite 
input volume overestimation on routes that have the capacity to accommodate higher volumes. These findings demonstrate the need to prioritize 
data streams based on the given application and underlying corridor conditions.  
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1. INTRODUCTION 
Smart cities across the world utilize smart corridor testbeds 

to explore technology implementations [1, 2, 3, 4, 5]. Often, a 
smart corridor is equipped with communications technologies 
[3], enabling the transfer of significant data between vehicles, 
the infrastructure, and corridor management centers. These data 
can be in different forms, such as connected vehicle data provid-
ing high resolution instantaneous vehicle specific data and sig-
nal phase and timing data, vehicle counts from in-road or road-
side detectors, probe vehicle data such as that from INRIX [6], 
HERE [7], etc., to name a few. Smart corridor applications seek 
to convert these data into actionable information, to improve 
corridor performance. However, the presence of data gaps in the 
data streams can impair such efforts. Thus, it is imperative to 
develop data imputation methodologies as well as to understand 
the impact of such imputation on the application performance.  

In a previous effort the authors developed a smart corridor 
application, a real-time data-driven traffic simulation model, 
i.e., Digital Twin, for the North Avenue Smart Corridor in At-
lanta, Georgia [8, 9]. The Digital Twin, driven using high fre-
quency volume and signal data, is capable of dynamically 
providing corridor traffic and environmental performance 
measures [8, 9]. However, investigation of the corridor data 
streams revealed the presence of data gaps. To address the vol-
ume data gaps, bi-directional Long Short-Term Memory 
(LSTM) Recurrent Neural Networks (RNNs) univariate and 

multivariate imputation models were developed. Experiments 
were conducted to investigate the LSTM RNN model perfor-
mance under typical and atypical day conditions [10]. Of spe-
cific interest was exploring if supplementing historic data from 
the given data stream with the most recent data from similar 
data streams (multivariate model) provides superior predictions 
over utilizing only historic data (univariate model). Experi-
mental results indicated the potential for a multivariate LSTM 
RNN model to provide reasonable imputations on typical and 
atypical days [10].  

In this paper the reasonableness of the data estimations is 
explored by identifying limitations and evaluating the appropri-
ateness of the imputation models to drive the Digital Twin. A 
simulation experiment is conducted using the Digital Twin to in-
vestigate the impact of the univariate and multivariate model 
imputations on generated travel times for selected corridor 
routes.  

2. LSTM RNN MODEL DEVELOPMENT 
RNNs are a variant of Neural Networks, capable of utilizing 

the “memory” of previous event data to predict the next values 
in a sequence [11]. However, RNNs can suffer from the vanish-
ing gradient problem in backpropagation implementation [12]. 
This may be a drawback when accounting for long-term depend-
ency in a sequence is crucial to prediction accuracy. LSTM 
RNN [13] seeks to address this issue through the inclusion of a 
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‘memory’ cell component along with gates to regulate the 
memory cell value [14]. A variant of LSTM RNN is bidirec-
tional LSTM RNN (BLSTM), where output mapping may learn 
from both past and future information [15].  

In the previous study [10], deep bidirectional LSTM RNNs 
were used to develop univariate and multivariate volume time 
series prediction models for six selected detectors on three ap-
proaches on the North Avenue corridor, a 2.3-mile long actuated 
corridor, as shown in Figure 1. Each of these approaches has 
two lanes, referenced as L_1 and L_2. The multivariate models 
are trained using the historic data of the detector experiencing 
data loss as well as data from a corridor detector drawn from a 
cluster of detectors that have been identified to have a similar 
time series data pattern using cluster analysis. For a comprehen-
sive literature review on time series similarity measures, traffic 
data imputation methodologies, and the LSTM RNN model de-
velopment process, the reader is referred to Saroj [10]. 

3. EXPERIMENT DESIGN 
A simulation experiment is designed to study the impact of 

the previously developed univariate and multivariate prediction 
models on simulation generated performance measures for a 
typical weekday, Monday, March 18th, 2019, and a weekday 
with atypical traffic conditions, Monday, May 27th, 2019, (Me-
morial Day). For each of these days the PM peak hours (3 PM to 

6 PM) are simulated for three traffic volume sets, input at the 
three corridor approaches: 1) base traffic condition (original vol-
ume), 2) univariate model imputations, and 3) multivariate 
model imputations. A discussion of the base traffic volumes and 
signal timings for each experiment day may be found in [9]. The 
second and third volumes cases assume a three-hour data gap in 
the base traffic data at the three study approaches, utilizing the 
imputed volumes for these locations. Volumes during simula-
tion run-time are imputed (i.e., predicted) as would occur in a 
real-time event, that is, the simulation model and algorithms are 
only fed data up to the equivalent wall clock time, i.e., the actual 
time in the field. Imputations are then based on the current wall 
clock (real-time) data and previous (historical) data. For each of 
the three data cases, for each of the two traffic days, ten repli-
cate simulation trials are run to evaluate the impact on travel 
times on the nine corridor routes, i.e., the three studied side-
street approaches and the six mainline routes (Figure 1).  

4. RESULTS AND DISCUSSION 
The developed univariate and multivariate models for each 

of the six detectors are used to predict volumes from 3 PM to 6 
PM. Table 1 presents the performance error measures for the 
model predictions.  

 
  

 
 

Figure 1. LSTM RNN model developed for three North Ave. corridor approach locations and the nine studied routes [10] 
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Table 1. Error measures for LSTM RNN model predictions for 3 PM to 6 PM. 

Detector Model Type March 18th (Typical Day) May 27th (Atypical Day) 
MAE RMSE Std. Dev MAE RMSE Std. Dev 

State-EB-L_1 Univariate 5.2 6.3 6.3 20.6 22.7 9.6 
State-EB-L_1 *Multivariate** 5.0 6.1 6.1 5.2 6.1 4.0 
State-EB-L_2 *Univariate 4.8 6.0 6.0 32.0 33.1 8.4 
State-EB-L_2 Multivariate** 5.4 7.24 7.2 16.4 18.2 7.8 
Connector-SB-L_1 Univariate 32.1 38.3 21.5 40.5 42.9 16.1 
Connector-SB-L_1 *Multivariate** 19.4 26.2 20.7 7.0 8.2 8.0 
Connector-SB-L_2 *Univariate** 8.7 11.1 10.7 12.2 15.0 13.0 
Connector-SB-L_2 Multivariate 10.0 12.8 12.8 23.1 25.1 9.8 
Peachtree-SB-L_1 *Univariate** 6.4 8.6 7.4 9.2 11.1 8.1 
Peachtree-SB-L_1 Multivariate 7.2 8.6 7.8 9.8 11.3 7.9 
Peachtree-SB-L_2 *Univariate** 6.9 8.4 7.5 4.6 6.0 5.6 
Peachtree-SB-L_2 Multivariate 8.3 10.6 8.0 12.5 13.3 5.1 

Notes: 
* An asterisk indicates lower error values among the two model types on typical day predictions 
** Two asterisks indicate lower values among the two model types on atypical day predictions 
MAE: mean absolute error, RMSE: root mean square error, Std. Dev: Standard Deviation of Errors 

 
It is observed that the multivariate and univariate predic-

tions tend to be similar on the typical day, with univariate errors 
often lower than that of multivariate, consistent with previous 
research findings [10]. On the atypical day, it is expected that 
the multivariate model will provide improved imputation values 
compared to the univariate model, as the historical data is not 
consistent with current conditions. This is seen to be true for 

most detectors. However, at Connector-SB-L_2 and Peachtree-
SB-L_2 the univariate prediction errors are observed to be much 
lower than multivariate prediction errors. For example, for Con-
nector-SB-L_2 Figure 2 shows the plots for observed traffic vol-
umes from midnight to 6 PM for each day along with the uni-
variate and multivariate model predictions from 3 PM to 6 PM.  
 

 

 
Figure 2. Model predictions for Connector-SB-L_2 starting at 3 PM. 
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As seen in Figure 2, one reason for the weaker performance 
of the multivariate model at Connector-SB-L_2 is a poor corre-
lation between the traffic pattern on the matched detector and 
the given detector. The identification of detectors with similar 
patterns was undertaken utilizing data streams from multiple 
“typical” days [10]. This raises a possibility that detectors that 
are reasonably correlated under typical conditions may not be 
well correlated under atypical conditions. Thus, future 
improvements to the method may be achieved by identifing 
different matching detectors for different conditions.  

In further exploring the simulation performance given the 
imputed data it is noted that the field volume data was available 
in six-minute bins. Therefore, the imputation was also set to 
generate six-minute binned data. Thus, in the simulation 
implementation the volume data is entered into the model in six-
minute intervals, randomly distributed (shifted poisson 
distribution interarrival times) over the interval length. 
However, if the entry link is oversaturated (i.e., a vehicle queue 
extends to the link entrance point) the new vehicles will not be 

able to enter the network during their set interval, and will 
instead be held until space becomes available. Figure 3 shows 
the volumes that entered the simulation model at Peachtree St. 
SB for the ten univariate and multivariate replicate trials, for the 
typical and atypical day scenarios, as well as the imputed vol-
ume that sought to enter. A low difference between the imputed 
and processed entry volume per six-minute interval suggests un-
der-saturated conditions. However, the variation in the March 
18th volume entry counts for the multivariate imputations sug-
gests that this approach operates near saturation state during the 
typical day PM peak period, with the slightly higher multivari-
ate imputed volumes sufficient to create over-saturated condi-
tions. The variation in entry volumes given the univariate im-
puted values is significantly less, as the imputed volumes are 
lower than those of the multivariate model (Figure 4). Another 
clear observation from Figure 4 is that both imputation ap-
proaches have a tendency to smooth the volumes relative to the 
field conditions.  
  

 

 
 

Figure 3. Imputed vs Entry volume (10 replicate seeds) for Peachtree St. SB approach volumes in the six-minute bins. 
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Figure 4. Approach volume for three cases for 3-6 PM at Peachtree St. SB. 

4.1 Impact on Digital Twin Generated Travel Time 
Figure 5 presents box plots of the 85th percentile travel 

times obtained from the replicate trials at the nine routes, for the 
three data input scenarios, for the typical and atypical days. It is 
observed that for the typical and atypical scenarios, travel times 
simulated using the multivariate imputations are generally closer 
to that of the base day than those simulated using the univariate 
imputations. For 8 of 9 routes under typical conditions multivar-
iate provide closer results than univariate, reducing errors on av-
erage by 4%. Under atypical conditions, also for 8 of 9 routes, 
multivariate provides closer results, reducing errors on average 
by 3%. 

 The impact of underlying corridor demand, i.e., saturated 
vs under-saturated, can be seen on the simulated travel times. 
For example, lower travel time variation is seen on the atypical 
traffic day across cases, likely due to the lower holiday traffic. 
In addition, on Route 19, there are observable travel time differ-
ences for the three cases under typical conditions likely due to a 
saturated traffic state for the PM peak on the typical day versus 
the under-saturated holiday traffic. The low travel time differ-
ences for typical and atypical holiday traffic on Routes 75 and 
84 are a result of under-saturated conditions on both days, even 
though for these routes the univariate imputation provides 
higher volume estimates than both the multivariate model and 
base data on the atypical day. 

 
 

 
(a) Typical traffic 

 
(b) Atypical traffic day 

Figure 5. Boxplots of 85th percentile travel time at the nine study routes for (a) March 18th and (b) Monday, March 27th 
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Given the under-saturated conditions the overestimated vol-
umes were not sufficiently erroneous to impact travel times. 
However, over-estimation of volumes is likely a factor that con-
tributed to the increased travel time for the univariate model 
scenario compared to the base case on Routes of 57, 58, 59, and 
60 (Figure 5b). Here, the volume estimation error combined 
with the underlying near-saturation conditions were sufficient to 
negatively influence the predicted travel times.  

These observations clearly indicate that when developing 
smart applications, it is critical to identify those locations with 
the most potential to influence results. Key attributes of the ap-
plications, such as identification of a matching detector in the 
given example, should be assured as well as increased data con-
trol and data quality efforts at these locations. 

5. CONCLUSIONS AND FUTURE WORK 
This effort investigated the impact of the previously devel-

oped LSTM RNN multivariate and univariate model imputa-
tions on Digital Twin generated travel times. The results indi-
cate that for the studied typical and atypical traffic, the multivar-
iate imputations lead to simulated travel times that are closer to 
that of the base day. However, additional improvements in the 
multivariate method may be achieved by improved matching de-
tector selection. Next, the importance of the underlying corridor 
conditions, i.e., saturation level, is observed. It is demonstrated 
that when developing smart applications both the imputation 
methodology and the local conditions must be considered. Spe-
cific to this effort, to improve the performance of the LSTM 
RNN models, future investigations may consider additional 
atypical training and test data as well as hyperparameter tuning.  
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