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systems. The journal scope includes a broad range of research topics in transportation policy, planning, systems 
analysis, engineering, technological innovations and societal impact related to MMS. 

If you want to submit a paper to this journal, MS Word Template for the paper can be downloaded from the journal 
website.  

Journal details: 

• ISSN: 2644-2388
• Publisher: Mason Publishing (George Mason University)
• Distribution: On-line only
• Publication Frequency: Immediately after acceptance. Archival is currently done annually.
• Indexing: Currently indexed by CrossRef and Google Scholar. Will be indexed in DOAJ and other premier

indexing avenues as soon as the eligibility criteria are met.
• Article processing fee: Currently there is no fee to publish in JMMS

Sponsors2: 

• Sid and Reva Dewberry Department of Civil, Environmental and Infrastructure Engineering (CEIE),
George Mason University

• Association of Transportation Professionals of Indian Origin (ATPIO)

1 The limit of 1700 words was adapted from the now discontinued extended abstract format used for TRB annual meeting 
proceedings. Length exceptions may be made for some papers with proper justification. In no case the length of the abstract and 
paper should exceed 200 and 2000 words, respectively.  

2 Sponsors provide financial support to bear the costs associated with publishing JMMS so that the authors and readers are not 
charged. We welcome all sponsors - individuals, not-for profit entities or corporations. Your sponsorship to the journal may be 
federal tax deductible. For sponsorship enquiries, please contact Mohan Venigalla, Chief Editor at mvenigal@gmu.edu. 

https://journals.gmu.edu/index.php/jmms
mailto:mvenigal@gmu.edu


Mason Publishing ii 

Co-Editors in Chief 
Mohan Venigalla, Ph.D., P.E., FASCE 
George Mason University 
Fairfax, VA (USA) 
mvenigal@gmu.edu  

Thomas Brennan, Jr. Ph.D., P.E. 
The College of New Jersey, Ewing Township, NJ 
(USA) 
brennant@tcnj.edu  

Associate Editors 
Ashih Bhaskar. Ph.D. 
Queensland University of Technology 
Brisbane, QLD 4000 (Australia) 
ashish.bhaskar@qut.edu.au  

Christopher Cherry, Ph.D. 
The University of Tennessee 
Knoxville, TN (USA) 
cherry@utk.edu  

Christopher Day, Ph.D. 
Iowa State University, Ames, IA (USA) 
cmday@iastate.edu  

Mihalis M. Golias, Ph.D. 
University of Memphis 
Memphis, TN (USA) 
mgkolias@memphis.edu  

Alexander Hainen, Ph.D. 
University of Alabama 
Tuscaloosa, AL (USA) 
ahainen@eng.ua.edu  

Srinivas Pulugurtha, Ph.D., P.E., FASCE 
University of North Carolina at Charlotte, Charlotte, 
NC (USA) 
sspulugu@uncc.edu  

Ashish Varma, Ph.D 
Indian Institute of Science 
Bangalore (India) 
ashishv@iisc.ac.in  

Matthew Volovski, Ph.D. 
Manhattan College  
New York, NY (USA) 
mvolovski01@manhattan.edu 

Duminda Wijesekera, Ph.D. 
George Mason University 
Fairfax, VA (USA) 
dwijesek@gmu.edu  

Shanjiang Zhu, Ph.D. 
George Mason University 
Fairfax, VA (USA) 
szhu3@gmu.edu  

Editorial Board 
Adel W. Sadek, Ph.D. 
University at Buffalo 
Buffalo, NY (USA) 
asadek@buffalo.edu   

Shashi Nambisan, Ph.D. 
University of Nevada, Las Vegas 
Las Vegas, NV (USA) 
shashi@unlv.edu  

mailto:mvenigal@gmu.edu
mailto:brennant@tcnj.edu
mailto:ashish.bhaskar@qut.edu.au
mailto:cherry@utk.edu
mailto:cmday@iastate.edu
mailto:mgkolias@memphis.edu
mailto:ahainen@eng.ua.edu
mailto:sspulugu@uncc.edu
mailto:ashishv@iisc.ac.in
mailto:mvolovski01@manhattan.edu
mailto:dwijesek@gmu.edu
mailto:szhu3@gmu.edu
mailto:asadek@buffalo.edu
mailto:shashi@unlv.edu


iii  Mason Publishing 

Volume 01 (2020)  
https://journals.gmu.edu/index.php/jmms/issue/view/230 

TABLE OF CONTENTS 

1. Characterization of the Coronavirus Pandemic on Signalized Intersections Using Probe Vehicle Data
Bryan Remache-Patino & Thomas Brennan

101 

2. Motivations and Mode-choice Behavior of Micromobility Users in Washington, DC
Siddhartha Rayaprolu & Mohan Venigalla

110 

3. Applicability of Long Short-Term Memory Traffic Volume Imputation Model to Drive Connected
Corridor Simulation
Abhilasha Saroj, Angshuman Guin & Michael Hunter

119 

4. Identifying Road Links and Variables Influencing the Applicability of Variable Speed Limits Using
Supervised Machine Learning and Travel Time Data
Sarvani Duvvuri, Sonu Mathew, Srinivas Pulugurtha, & Raghuveer Gouribhatla

125 

5. Could Value-Based Pricing Improve Economic Sustainability of Bikeshare?
Mohan Venigalla, Siddhartha Rayaprolu, Thomas Brennan & Shruthi Kaviti

131 

https://journals.gmu.edu/index.php/jmms/issue/view/230


  
 

 

 iv   

  

 

 

 

 

 

 

 

 

 

 

 

 

This page was intentionally left blank. 

  



v  Mason Publishing 

Editors’ Note 

Welcome to the Inaugural Issue of JMMS 

The overarching goal of Journal of Modern Mobility Systems (JMMS) is to provide a high-quality venue to display 
time-critical research on a public venue that can positively impact society. Because technology and its impact on 
transportation systems are evolving at a faster pace in the recent years, the primary objective of (JMMS) is to 
facilitate the publication of cutting-edge, peer-reviewed research works in a timely manner. Specifically, JMMS 
strives to obviate the need for researchers to await a six- to twelve-month turn around time for presentation at a 
major conference or publication in a leading journal. From our perspective, it is also important to assure that authors 
retain the rights to their work while parts of their research results are disseminated quickly through JMMS.  

Given the usual difficulties with the launch of a new journal that aspires to be at the forefront of research, especially 
during a disruptive pandemic, it has been a bit of a slow start for JMMS. However, the JMMS activities gained 
momentum in the later part of the year with a marked rise in quality articles submitted for review. We are pleased to 
release Volume 01(2020) of JMMS with five high quality research briefs.  

The need to have transportation research work recognized and placed in a public forum was never more apparent 
than in 2020. We launched JMMS in a year that will forever be known for the outbreak of the COVID-19 pandemic. 
As such, a core theme of this journal is to disseminate early the research findings related to the disruptive forces in 
transportation that are reshaping travel, travel modes and travel demand worldwide.  Worldwide, the pandemic 
infected over 82 million people, caused more than 1.8 million deaths, and caused economic hardships to businesses 
and people. Most relevant to this journal, the pandemic has disrupted both traditional and disruptive forces in the 
world of transportation. For example, as remote work has become one of the effective mechanisms to combat the 
spread of the virus, airline travel, transit ridership, traffic volumes have been down significantly. People have found 
alternative ways to get around. E-commerce has exploded that resulted in a marked increase in delivery trips. The 
share of travel by bicycling mode has increased to the point that there are reports of bicycle shortages.  

Given the dramatic short-term and potentially long-term changes in the transportation systems that are direct result 
of the COVID-19 pandemic, transportation researchers will be faced with numerous challenges in evaluating the 
systems and developing solutions. With these changes, new research is being conducted that needs to be made 
public through reliable journals quickly.   

Thus, we are encouraging submissions to JMMS on research works that are related to the broad areas of 
transportation systems with focus on modern innovations on mobility.  For articles that merit publication, there will 
be a maximum of a three month turn around until publication. For 2021, we are especially interested in works that 
clearly outline new and innovative transportation research associated with the impacts of COVID-19 and potentially 
with the post-pandemic dynamics of travel and transportation. We will also consider reviewing articles that were 
submitted to other leading avenues but may not have met the cut for publication in the associated journals (e.g., 
Transportation Research Board). If those articles fit the scope of JMMS and have received very good reviews in 
prior round, we strongly encourage you to submit them to JMMS for expedited review. 

We sincerely thank the Dean of Volgenau College of Computing and Engineering, the Dean of Libraries, the 
Provost and the President of George Mason University for their support and encouragement in launching JMMS. 
We also thank our sponsor ATPIO (http://ATPIO.org) for helping us deliver a highly professional product. 

We are anticipating and looking forward to a robust year ahead for JMMS.  

Mohan Venigalla 
Thomas Brennan 

Co-Editors in Chief 
Journal of Modern Mobility Systems 
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ABSTRACT 
The Coronavirus (COVID-19) pandemic presents a unique opportunity to establish a baseline for studying transportation performance metrics be-
fore, during, and the eventual transition to normalcy using probe vehicle data. Probe vehicle speed data are already being used to evaluate traffic 
congestion characteristics, resiliency, and network response at local, corridor, and regional levels. A better understanding of changes in traffic char-
acteristics, 24-hours a day, 7 days a week, can be realized through the analysis of spatially located, temporal speed data. This paper explores the use 
of probe vehicle data sets to establish the baseline traffic conditions under the unique conditions resulting from COVID-19. The preliminary re-
search analysed about 500,000 speed records over a 21-week period at two intersections in Northern New Jersey to numerically and visually char-
acterize the speed patterns through the COVID-19 progression. Although further research and statistical analysis is necessary to evaluate the data as 
it relates to the New Jersey State pandemic and emergency management policies, the preliminary results indicate school closures and the stay-at-
home order have significantly impacted normal traffic and thus present a unique research opportunity to study baseline, non-congested conditions.  

Keywords: roads & highways, traffic management, infrastructure planning, COVID-19, travel speed 

1. INTRODUCTION
Under the Operations Performance Measurement Program

[1] of the United States Department of Transportation 
(USDOT), federal, state, and local agencies have been increas-
ingly using the National Performance Management Research 
Data Set (NPMRDS) to evaluate road performance as well as 
external factors that impact roadway performance [2]. Probe Ve-
hicle Data (PVD), which is part of the NPMRDS, has been ap-
plied to the development of a number of visually intuitive, quan-
tifiable performance measures [3, 4, 5, 6, 7]. Other studies have 
incorporated PVD into congestion performance indices used in 
national reports [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. This re-
search applies a baseline performance metric and visualization 
technique to quantify the Coronavirus (COVID-19) pandemic’s 
impact on traffic operations and verify the decrease in speed 
variability near signalized intersections. The pandemic resulted 
in the closure of New Jersey State schools and offices on March 
18, 2020 [19] followed soon after by a stay at home order start-
ing March 21, 2020 [20].  The response to these closures was 
expected to decrease traffic congestion and speed variability, 
thus providing a unique opportunity to evaluate signal perfor-
mance under non-congested conditions. Without traffic volumes 
at the study sites, the variations in speed provide the only means 
to characterize how traffic is moving through the system and 
can be used as a means to understand congestion conditions im-
mediately following an unplanned, sustained emergency event. 

Preliminary results defined by Rick Schuman of INRIX [21], in-
dicate that personal travel in NJ is down by 36% between March 
1 and May 29, the second highest decrease for all states, with a 
peak reduction of 60%.  

This study entails the aggregation of approximately 495,208 
speed records for analysis. The visual analysis defined in this 
paper provides a way to chronical evolving disruption and even-
tual return to normalcy in traffic patterns resulting from a sus-
tained event. This research is conducted in preparation for a 
more in-depth state-wide analysis requiring the development of 
additional performance metrics evaluating billions of speed rec-
ords against the baseline COVID-19 conditions.  

2. DATA AND TEST BED
The evaluation of anonymous probe vehicle speed data re-

quires a cross-reference between spatially defined Traffic Mes-
sage Channels (TMC) and temporal speed datasets collected in 
one minute increments. The speed data associated with each 
TMC was provided by a commercial provider and available on 
the Regional Integrated Transportation Information System (RI-
TIS) website [22]. Two study sites, US Route 9 and Schanck 
Road, and US Route 22 and Rock Avenue (Figure 1) were used 
to evaluate the main approach speed data over a 150-day study 
period starting January 1, 2020. In Figure 1, the TMC distances 
as well as the proximity to the study sites are shown. For this 
paper the time prior to the start of March 18, 2020 is referred to 
as Before-COVID (BC) and time after as During-COVID (DC). 

https://journals.gmu.edu/index.php/jmms
https://doi.org/10.13021/jmms.Y.2736
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Figure 1. United States Route 9 and Route 22 study sites

3. MEASURES OF CONGESTION
Previous research using commercially available PVD had 

aggregated the data in 15-minute bins [13]. As part of the cur-
rent research, three different bin sizes were compared to deter-
mine if a more granular data aggregation was necessary. The av-
erage speed for each TMC was determined by calculating the 
average speed of all available data in 15-, 10-, and 1-minute 
bins. The average speed (AvgSpeed) for each bin is calculated 
using the following: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 =
1
𝑛𝑛𝑗𝑗
�𝐴𝐴𝑖𝑖𝑗𝑗
𝑗𝑗∈𝐹𝐹

 (1) 

Where, 
AvgSpeed is the average speed threshold for TMC i; 
vij are speed records for TMC i for the respective in-
terval j; nj is the total count of the binned intervals 
within study interval F, which is defined as all the 
bin periods (96 for 15-minute bins, 144 for 10-mi-
nute, and 1,440 for the raw 1-minute data) for each 
day of the study period. Only commercially available 
INRIX data with a high confidence score of 30 and a 
greater than 85% probability of reflecting current 
traffic conditions was used [22]. 

3.1 Comparison of Bin Sizes 
A visual analysis of the cumulative distribution function 

(CDF) for all data collected is shown in Figure 2 and Figure 3. 
The figures illustrate the average BC and DC speeds for the 15-, 
10-, and 1-minute bins. It is noted that no commercial data was 
available between March 28, 2020 through April 1, 2020. The 
CDF BC and DC median shifts for all the speed bins are re-
flected in the figures. Although all the shifts are relatively simi-
lar, the biggest shift occurred in Figure 3b, where southbound 
velocity increased by around 4 mph DC. It is also noted that the 
low average speed at this intersection is most likely due to the 
proximity to an off ramp from State Route 33. Although further 
research is needed to statistically evaluate different bin sizes, 
peak travel times, and the eventual return of the expected 
speeds, a simple analysis of the speed data appears to show that 
the three bin sizes provide similar results. In all cases there is an 
increase in speed, a result of COVID-19. A day-by-day break-
down of the data is shown in Figure 4 and Figure 5, where simi-
lar shifts in average speed can be seen for all direction in US-22 
and US-9. Baseline speeds for these figures can be found in Ta-
ble 1 and Table 2, where high variance can be seen in US-9 
southbound. This may because of its short length, and connec-
tion to an offramp from NJ-33. 
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a. Eastbound

b. Westbound
Figure 2. US-22, Speeds for Varying Bin Sizes Before and After March 18, 2020 (Posted Speed 50 MPH) 
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a. Northbound

b. Southbound
Figure 3. US-9, Speeds for Varying Bin Sizes Before and After March 18, 2020 (Posted Speed 50 MPH) 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 30 35 40 45 50 55

Cu
m

ul
at

iv
e 

Pe
rc

en
t

Daily Average Speed (MPH)

BC 15 Min Bins

DC 15 Min Bins

BC 10 Min Bins

DC 10 Min Bins

BC 1 Min Data

DC 1 Min Data

+2.7 MPH 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

25 30 35 40 45 50 55

Cu
m

ul
at

iv
e 

Pe
rc

en
t

Daily Average Speed (MPH)

BC 15 Min Bins

DC 15 Min Bins

BC 10 Min Bins

DC 10 Min Bins

BC 1 Min Data

DC 1 Min Data

+4.0 MPH



J. of Modern Mobility Systems 01 (2020)  Remache-Patino and Brennan 

105  Mason Publishing 

a. Eastbound

b. Westbound
Figure 4. Average Daily 15-Minute Speeds BC, DC for US Route 22 

Intersection 

Table 1. Before Covid Closings Weekday (Mon-Fri) Statistics Based 
on 1 Min. Data 

Road/Direction Avg(MPH) Variance St Dev. 
US22 Eastbound 38.6 35.6 6.0 
US22 Westbound 39.5 31.7 5.6 
US9 Northbound 43.5 25.3 5.0 
US9 Southbound 29.8 93.9 9.7 

Table 2. During Covid Closings Weekday (Mon-Fri) Statistics Based 
on 1 Min. Data 

Road/Direction Avg(MPH) Variance St Dev. 
US22 Eastbound 42.6 17.3 4.2 
US22 Westbound 42.7 24.5 4.9 
US9 Northbound 46.6 30.9 5.6 
US9 Southbound 33.9 120.8 11.0 

a. Northbound

b. Southbound
Figure 5. Average Daily 15-Minute Speeds BC, DC for US Route 9  

Intersection 

3.2 Average Speed Visualized 
The US-22 study site was used to illustrate the juxtaposed 

average speeds per day in a heat map type format. For the east-
bound and northbound approaches for US-22, both the 10-mi-
nute (Figure 6) and 15-minute (Figure 7) bins were used, where 
the y-axis is the respective bin period and the x-axis is the day 
of the year. Each cell reflects the AvgSpeed for their bin, which 
is used to characterize the speed near the intersection. These 
heat maps present a visualization of steady patterns, and devia-
tions from those patterns. Traffic speed deviations emerge 
slightly earlier then March 18, beginning around Monday March 
16. This may be due to the order going out March 16 [19]. In the
figures, the transition from BC and DC is readily apparent. Also 
apparent are the BC AM and PM Peak times, weekend travel 
BC as well as the absence of both AM and PM Peak times DC. 
When comparing the two bin sizes, Figure 6 and Figure 7, it is 
apparent that there is not an immediately recognizable differ-
ence between the two. 

The variance in speeds for BC and DC in Table 1 and Table 
2, are visually represented in Figure 7 and Figure 8. For US22 
the varience decreases as speeds become consistently faster, but 
with minimal peaks. US9 however sees its variances increase 
DC. This is apparent southbound, where peak travel times 
appear twice, once at 1300 and again at 2000, as compared to 
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the more continuous flow BC. For US9 northbound the peak 
during the 1300 is more abrupt, as compared to BC when the 
congestion occurred throughout the day.  It was expected that 
both intersections would have a decrease in varience, with a 

smoother flow. What was interesting about US9 is that the 
varience increased because the congestion that normally appears 
throughout the day became more confined to traditional peak 
times. 

a. Eastbound

b. Westbound
Figure 6. 10-minute Bin Speed Distribution for US-22, 2020 
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a. Eastbound

b. Westbound
Figure 7. 15-minute Bin Speed Distribution for US-22, 2020 

4. CONCLUSIONS
Due to the COVID-19 pandemic, a New Jersey executive

order was made on March 16, 2020 to close schools starting 
March 18, 2020. This study was developed as a preliminary 
evaluation to determine how much of an impact this pandemic 
has on travel speeds, and speed variations through the use of 
visualizations and varying bin sizes. Ultimately this research 
will be expanded state-wide with more evolved performance 
metrics, but for this paper changes in average travel speed is 
measured at two intersections, US Route 22 and Rock Avenue, 
and US Route 9 and Schanck Road. The results of the analysis 
showed that there was definitive changes in travel speeds whose 
increase ranged from 2.3 to 4.0 MPH. A cumulative distribution 
frequency diagram demonstrated that the three different average 
speed bins (15-, 10-, and 1-minute) were relatively close, con-
firming that either the 15- or 10-minute bin would adequately 
characterize traffic speeds. Additional analysis indicated a de-
crease in speed variance for US Route 22, and an increase for 
US Route 9. It was expected that both intersections would have 
a decrease in variance, thus indicating smoother flow. For US 

22, after reviewing the heatmap it became apparent that US 22 
had defined peak travel times BC, which were gone DC. How-
ever, US 9 had a single Peak Travel time BC, but in DC it had 
two peak travel times, an indication that although traffic got less 
congested, the improvement of the traffic flow caused more var-
iance in speed. 

Based on these preliminary results, it appears that COVID-
19 has had a significant impact on the motoring public of New 
Jersey. This was not unexpected. However, the unfortunate pan-
demic has presented a unique opportunity to study traffic pat-
terns under smoother traffic flows under non-congested, at least 
partially non-congested conditions. The results support the need 
to extend this research across the region to better understand 
how the traffic system responded not only to the shut down, but 
to the eventual recovery.  This data can also be used to better 
understand the traffic signalization and how retiming might im-
prove traffic flow. Further research is underway to quantify the 
pandemic’s disruption of state traffic patterns, tolling, and re-
covery process, as well as evaluating how to incorporate similar 
data revolving around COVID-19 [23].
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a. Northbound

b. Southbound
Figure 8. 15-minute Bin Speed Distribution for US-9, 2020 
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ABSTRACT 
The COVID-19 pandemic has reduced travel in general and disrupted travel patterns across the United States. The transit and ridehailing service 
ridership are particularly severely impacted. After an initial dip, shared micromobility services, including bikeshare, e-scooters, and e-bikeshare, 
have gained popularity as social distancing promoters with fewer points of contact. The findings of this article are based on the first phase of a two-
phase mixed-mode survey of users and non-users of micromobility in Washington DC (n=440) in the Summer of 2019. While the phase-2 of the 
study is impacted by COVID-19 prevalence, results from the phase-1 are expected to serve as a critical baseline for post-pandemic travel behavior 
analysis and policy design. Findings indicate that each micromobility mode caters to different trip purposes and trip lengths of riders. While pleas-
ure and time are identified as the biggest motivator for users, safety and pricing remain the most prominent barriers to users and non-users. Women 
and ethnic groups prefer to stay unimodal. Young and low-income users tend to be multimodal in their micromobility usage.    
 

Keywords: Micromobility, Capital Bikeshare, E-scooters, E-bikeshare, Dockless bikeshare, Intercept survey, logistic regression, COVID-19 

1. INTRODUCTION 
As evidenced by their rapid adoption in recent years, shared 

micromobility services have resonated with consumers and in-
vestors, pointing to the likelihood of even more rapid growth in 
the future. Despite their widespread deployment in several met-
ropolitan areas, very little is understood about the profiles and 
preferences of e-scooter users vis-à-vis a more mature station-
based bikeshare system. As COVID-19 disrupted the travel be-
havior of users, it is of great importance to have a baseline refer-
ence to compare with the post-pandemic mode-choice behavior.  

Earlier studies on station-based bikesharing have docu-
mented noteworthy findings on user demographics, mode-
choice preferences, and the spatial equity of service [1]–[5]. 
However, very little is known about the relatively recent dock-
less systems users and their interactions with other modes. 
There are limited user-surveys that effectively portrayed the dif-
ferences in characteristics among different micromobility users 
to understand their mode-choice behavior patterns. Furthermore, 
there are no past studies that analyze the multimodal behavior of 
micromobility users. A detailed summary of the user-survey lit-
erature is presented in Table 1 

This research aims at understanding the demographics, per-
ceptions, and preferences of micromobility users – both in abso-
lute and relative terms - through a mixed-mode survey of micro-
mobility users in the Washington DC metro area. We approach 
this goal by emphasizing three research questions:  

1. What makes a person choose one micromobility mode over 
the other? 

2. Which set of micromobility users tends to be multimodal? 
3. How do users perceive individual micromobility mode?   

2. THE STUDY AREA CHARACTERISTICS AND 
METHODOLOGY 
At the time of this study (July 2019), Washington DC 

hosted seven e-scooter operators, one station-based bikeshare 
and one dockless e-bikeshare programs. The city also hosted 
dockless bicycles between late 2017 to early 2019, which were 
later replaced by e-scooters. 

2.1 Survey design 
A two-page mixed-mode survey instrument was designed to 

capture various characteristics of micromobility users. Ap-
proved by the Institutional Review Board, the survey was tai-
lored to capture four types of potential respondents. 
1. Capital Bikeshare (CaBi) users that do not prefer to use 

dockless vehicles 
2. Users that prefer both CaBi and dockless vehicles based on 

individual trip purpose 
3. Old CaBi users that completely shifted to dockless systems  
4. New dockless vehicle users that never tried any micromo-

bility systems before.  
Dockless vehicle users include users from e-scooter, e-

bikeshare and past dockless bikeshare services. 

https://journals.gmu.edu/index.php/jmms
https://doi.org/10.13021/jmms.2020.2894
https://atpio.org/
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Table 1. Summary of recent literature on different shared-micromobility services 

Authors Year Study area Methods Findings 
Station-based bikesharing 

Kaviti et al.[3] 2019 Washington, DC Survey 
The majority of registered CaBi users (82%) chose bikes for commuting purposes, 
while a majority of casual CaBi users (57%) use them for social /recreational /sight-
seeing /touring purposes  

Chen, M., et al. 
[6] 2018 Hangzhou, 

China Survey 

1. Station-based bikesharing (SBS) and Free-floating bikesharing (FBS) have simi-
lar user structure, but different factors influence use frequency 

2. SBS's strength is to have good quality with low cost while FBS is more flexible 
and is free to use 

Buehler, R. & 
Hamre., A[7]  2019 Washington, DC Survey 

3. Savings in travel time (73% of users) and cost (25% of users) are significant mo-
tivators of CaBi.  

4. Joining CaBi to save money had a significant positive association with new trips 

Dockless bikesharing 

Hirsch et al.[8] 2019 Seattle, WA Survey Most resident bikeshare users are disproportionately young and white men who al-
ready use bicycles 

Chen, Z., et al. 
[9] 2020 Beijing, China Survey 

1. Dockless bikeshare systems are more popular among younger, higher educated, 
or median-income groups and appear to be gender-independent.  

2. Having a pro-bicycle attitude helps in the mode-choice behavior but does not ac-
count well for usage frequency 

E-bikesharing 

Dill, J., &  
Rose, G.[10] 2012 Portland, OR Survey 

E-bikes help overcome some of the demographic barriers in society. They also address 
concerns over health problems related to inactivity, pollution, and other public policy 
problems to which private vehicles contribute 

Campbell, 
A.A. et al.[11] 2016 Beijing, China Survey 

1. The average trip length of e-bikeshare in china to be between 2.5 to 2.8 miles.  
2. They tend to divert users away from both the sheltered and unsheltered modes, as 

users tend to be less sensitive to trip distance, poor air quality, and severe temper-
atures.  

He at al.[12] 2019 Salt Lake City, 
UT Survey 

1. The presence of e-bike systems near denser public areas with higher economic 
and recreational activity has a positive relationship with their ridership.  

2. An average user identifies to be a visitor with a trip length of at least 5 miles, re-
gardless of the hilly terrain. 

Heineke et 
al.[13] 2019 United States Market 

research 

In the US, there is a $200B to $300B market potential for short-distance trips (under 5 
miles), and shared micromobility can capture conservatively about 8 to 15% of this 
market 

E-scooter sharing 

Smith, S.C., & 
Schwieterman, 
JP.[14] 

2018 Chicago, IL Trip data 
analysis 

1. Popular trip length is between 0.5 to 2.0 miles. E-scooters can increase trips from 
47% to 75% in a parking-constrained environment.  

2. E-scooters do not compete with transit for longer trips due to economic viability, 
and they make at least 16% of jobs more accessible within 30 min of ride time 

 Liu et al.[15] 2019 Indianapolis, IN Trip data 
analysis The popular trip length of e-scooters is between 0.5 to 2.0 miles 

Clewlow, R.[16] 2019 United States Survey 

1. E-scooters attained better gender equality compared to the earlier studies in the 
station-based bikesharing system.  

2. 70% of the survey respondents supported micromobility and considered e-scoot-
ers a much convenient form of transport than personal car ownership. 

James et al.[17] 2019 Arlington, VA Survey E-scooter trips in Rosslyn replaced trips otherwise taken by Uber, Lyft, or a taxi 
(39%), foot (33%), bicycle (12%), bus (7%), or car (7%) 

McKenzie, 
G.[18][19]  2019 Washington, DC API Data 

Analysis 

1. The trip length of e-scooters is less than 5 min, as opposed to CaBi members (15 
min) and casual users (40 min). 

2. Capital Bikeshare tends to be more commuter focused whereas LimeBike reflects 
more leisure or non-commute related activities  
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Orr et al.[20] 2019 Portland, OR Pilot/  
Survey 

1. Most users were people of color (74%), < 35 years (71%), with incomes < 
$30,000 (66%). 

2. In the absence of e-scooters, people made trips with a motor vehicle (34%), 
TNCs/Taxis (15%), and Personal car (9%). 

3. Cannibalized pedestrians (37%) and personal bike riders (5%). Attracted non-
bikeshare users (74%) and non-bicyclists (42%) 

4. Average trip length of 1.15 mi. Where users preferred e-scooters for trip connec-
tions (71%) and social/recreation trips (29%) 

Sanders, R.L., 
et al. [21]  2020 Tempe, AZ Survey 

1. E-scooters used more for transport than recreation 
2. Non-white non-riders significantly more likely to intend to try e-scooters 
3. E-scooters disproportionately replace walking and bicycling for all trip types. 
4. Women are significantly more likely to cite safety-related barriers to e-scooter 

use. 

2.2 Survey execution 
The intercept survey was conducted at 12 locations with 

higher activity of micromobility users. This field selection step 
was made based on preliminary observations from historical trip 
data of CaBi and E-scooters to understand the origin-destination 
patterns of these micromobility modes. Adequate samples were 
collected from all eight wards of Washington, DC, to ensure 
proper geographic coverage. 

Although the intercept survey was designed to capture the 
users from the above categories of 1 and 2, it had limited poten-
tial to capture the resident respondents from categories 3 and 4. 
Such lack of response is a result of the time and price sensitivity 
of the dockless users, who does not prefer to be interrupted. Ear-
lier research supports the importance of mixed-mode surveys in 
reducing the non-response error, and improve the quality of the 
data collected [22], [23]. Therefore, a web-version of the survey 
was circulated among the universities, major employer locations 
in the region, Reddit, Twitter, and LinkedIn. 

3. DATA ANALYSIS AND RESULTS 
A total of 440 responses from users and non-users of micro-

mobility systems were analyzed. Users and non-user responses 
were distinguished based on an inbuilt option of "never used one 
before", within the questionnaire. A total of 309 respondents 

(Paper-based: 171; Web-based: 138) were found to have used a 
micromobility service at least once. Steps were taken to com-
bine the responses from the mixed-mode survey and validate the 
sample against earlier peer-reviewed user survey studies on 
CaBi and E-scootersharing are described below.  

3.1 Data validation  
Table 2  presents the results of Pearson's chi-square test that 

compares the intercept and web-based survey samples. The test 
statistic, in conjunction with Cramer's V statistic, provides the 
strength of association between the two survey samples, in order 
to combine the datasets for model building. Except for gender, 
the respondent distribution from two types of surveys is not sig-
nificantly (α = 0.05) different from each other. Goodness-of-fit 
evaluations of current CaBi users against past user-survey study 
[24] indicate that the current sample of casual users closely re-
sembles the CaBi users in all aspects except gender (Table 3). 
E-scooter users from the current survey were compared to the 
sample distribution of Portland's e-scooter pilot study (Figure 
1). The percentage distribution of gender and racial characteris-
tics of the users between the two studies are similar. However, 
the income group classifications among low-income groups ap-
pear dissimilar. Both studies suggest a higher dominance of 
higher-income groups among users. 
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Table 2. Pearson's Chi-square test for goodness of fit: intercept vs web-based surveys 

Category Subcategory a 
Survey method 

χ2  df p-value Cramer's V Inference (based on α = 0.05) Intercept 
(n=171) 

Web 
(n=138) 

Age 

21-29 yrs. 73 73 

5.681 3 0.128 0.126 

The age of the respondent is inde-
pendent of the type of survey. Cau-
sation can be drawn on aggregated 
data 

30-39 yrs. 64 48 
40-49 yrs. 19 9 
50-59 yrs. 13 5 

Gender 
Female 68 38 

4.312 1 0.038 0.137 
There is a moderate relationship 
between the gender of the respond-
ent and the type of survey.  Male 101 97 

Income 

< $20k 25 16 

11.353 6 0.078 0.193 

The income group of the respond-
ent is independent of the type of 
survey. Causation can be drawn on 
aggregated data 

$20k-$34k 11 6 
$35k-$49k 14 8 
$50k-$74k 36 17 
$75k-$99k 34 32 
$100k-$149k 32 29 
>$150k 17 28 

Race / 
Ethnicity 

Asian 6 14 

8.196 4 0.085 0.165 

The race/ethnicity of the respond-
ent is independent of the type of 
survey. Causation can be drawn on 
aggregated data 

Black/African American 9 10 
Hispanic/Latino/Spanish 
origin 19 12 

White 126 85 
Other 10 11 

a Subcategories with a sample size of fewer than 5 respondents were not included in the test due to the chi-square test's analytical limitations. 

Table 3. Sample characteristics of the current survey compared to CaBi user survey in 2017 

The goodness of fit tests: Validation of the sample distribution  

 
Capital Bikeshare Members Capital Bikeshare Casual users 

2017a 2019b χ 2  df  p-valuec 2017 2019 χ 2  df p-valuec 

(n = 317) (n = 86) Inference (n = 305) (n = 148) Inference 

Gender 1.2309 1 0.267   9.3684 1 0.002 
Male 212 52 The gender composition of the two 

samples is not different 
162 98 The gender distribution of casual us-

ers from both samples are different Female 105 34 155 50 
Ethnicity 1.379 1 0.2404   2.5604 1 0.1096 

Non-White 60 22  The ethnic composition of member 
respondents is not different 

103 43  The ethnic composition of casual 
users from both the surveys may not 
be different White 244 58 179 105 

Income 4.5174 2 0.1045   2.1234 2 0.3459 
Low: < 
$35,000 32 10 

The income level of the member re-
spondents from both the surveys is 
not different 

76 33 

 The two samples are different 
Medium: 
$35,000 - 
$100,000 

127 44 130 70 

High: > 
$100,000 159 32 111 43 

a Capital Bikeshare user survey data from 2017, conducted by Shruthi et al. (Kaviti, Venigalla, and Lucas, 2019) 
c The corresponding p-values were computed through the Monte Carlo simulation of B-replicates. Thereby, the degrees of freedom of the ap-
proximate chi-squared distribution of the test statistic are "NA"  



J. of Modern Mobility Systems 01 (2020)                                                                       Rayaprolu and Venigalla  
 

Mason Publishing 114 

 

 

 
Figure 1. User characteristics of the current study v. Portland's pilot study

3.2 Logistic regression and odds ratio 

The demographic characteristics of micromobility users 
(Figure 2) indicate perceivable differences between the users of 
multiple micromobility modes. Two logistic regression models 
(Table 4) were developed: One–to estimate the log-odds of the 
multimodal behavior of all the micromobility users; Two–to es-
timate the log-odds of the micromobility mode-choice outcomes 
of bikeshare users (CaBi and E-bikes) in comparison to E-
scooter users. The logistic regression method estimates the odds 
or probability of response variable to take a particular value in 
response to a critical predictor value, usually while holding 
other predictors constant [25]–[27].  

Multimodality refers to the tendency of a user to ride multi-
ple transportation modes to reach their destination. The first re-
gression model analyses the log-odds probability of a user to 
ride a single or multiple micromobility modes among all the 
four choices. Users that prefer to ride a single micromobility 
mode are classified as 'unimodal,' and the others are classified as 
'multimodal'. The second model estimates the relative mode-

choice preferences of bikeshare and e-scooters. Inferences from 
both the models together indicate the extent, serviceability and 
influence of each micromobility mode on a particular group of 
users. 

The explanatory demographic variables include gender, 
age, income groups, ethnicity, car ownership, and usage fre-
quency. The 'frequency of usage' variable is classified into two 
categories: Occasional (<1 ride per week) and Frequent (1 or 
more rides per week). Results from the Logistic regression of 
multimodal behavior of among micromobility users indicate that 
women (p-value=0.018) and people of color (p-value=0.052) are 
more likely to be unimodal, at higher significance levels. 
Lower-income groups (p-value=0.034) and younger users (p-
value=0.032) are more likely to be multimodal. The compara-
tive model indicates that younger users are more likely to 
choose e-scooters over CaBi (p-value=0.007) and E-bikeshare 
(0.036). Females (p-value=0.039) and medium-income house-
holds (p-value=0.053) are more likely to choose CaBi over e-
scooters. There is no evidence of the significant influence of 
race, and personal car usage on the relative mode-choice. 

 
Figure 2. Demographic characteristics of micromobility users in Washington, DC 
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Table 4. Logistic regression models on user characteristics and mode-choice behavior 

Logistic regression model 1: Multimodal characteristics of micromobility users  
Mode  
(marginal %) 

Parameter (marginal %) β SE p-value Exp(B) 95% CI 
  Intercept -1.084 0.525 0.039   Lower Upper 

Multimodal User 
(45.2%) 

Gender Female (34.9%) -0.623 0.263 0.018 0.536 0.321 0.897 

Age Young (48.3%) 1.245 0.581 0.032 3.474 1.112 10.852 

Middle (44.5%) 0.986 0.558 0.07 2.679 0.898 7.993 

Income Low (18.8%) 0.878 0.414 0.034 2.405 1.069 5.409 

Medium (47.3%) 0.107 0.295 0.716 1.113 0.624 1.985 
Race Non-White (30.5%) -0.53 0.272 0.052 0.589 0.345 1.004 

Model fitting criteria 
(-2) Log-Likelihood Chi-square df Sig. 

90.149 21.849 6 0.001 
Pearson's goodness-of-fit statistics 33.058 23 0.08 

a. The reference category is Unimodal user 

Reference parameters: Male, Old, High income, and White users of micromobility 
Logistic regression model 2: Mode-choice preferences of bikeshare users in reference to e-scooter users 

Mode  
(marginal %) 

Parameter (marginal %) β SE p-value Exp(B) 95% CI 

  Intercept 1.656 0.61 0.007   Lower Upper 

Capital Bikeshare 
(48%) 

Gender Female (33.1%) 0.481 0.233 0.039 1.618 1.025 2.555 

Age Young (51.6%) -1.593 0.589 0.007 0.203 0.064 0.645 
Middle (44.9%) -0.607 0.555 0.274 0.545 0.184 1.617 

Income Low (22.9%) 0.577 0.367 0.116 1.781 0.867 3.659 
Medium (44.9%) 0.54 0.279 0.051 1.716 0.99 2.967 

Race Non-White (28.3%) -0.208 0.24 0.386 0.812 0.508 1.3 
Car owner-
ship 

No (40.7%) -0.024 -0.379 0.949 0.976 0.465 2.05 
Yes (48.2%) -0.094 0.361 0.794 0.91 0.448 1.847 

Usage Occasional (68.4%) -0.945 0.242 0.000 0.389 0.242 0.625 
    Intercept -0.44 0.775 0.57       

E-bikeshare (17.5%) 

Gender Female (33.1%) 0.306 0.297 0.304 1.357 0.758 2.431 

Age Young (51.6%) -1.537 0.733 0.036 0.215 0.051 0.905 
Middle (44.9%) -0.494 0.681 0.468 0.61 0.161 2.317 

Income Low (22.9%) 0.701 0.454 0.123 2.015 0.828 4.907 
Medium (44.9%) 0.012 0.361 0.97 1.012 0.499 2.056 

Race Non-White (28.3%) -0.158 0.304 0.603 0.854 0.47 1.55 
Car owner-
ship 

No (40.7%) 0.386 0.49 0.43 1.472 0.564 3.841 
Yes (48.2%) -0.138 0.467 0.767 0.871 0.349 2.174 

Usage Occasional (68.4%) 0.594 0.369 0.108 1.81 0.879 3.73 

Model fitting criteria (-2) Log-Likelihood Chi-square df Sig. 
332.91 65.899 18 0 

Pearson's goodness-of-fit statistics 110.974 192 1 
a. The reference category is E-scooters 

Reference parameters: Male, Old, High income, White, Car owners that do not drive, and Frequent users of micromobility 
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3.3 Shared and Micromobility Mode-choice and Trip 
length 
A chi-square test of independence among the user prefer-

ences of CaBi, e-bikeshare, and e-scooter indicated that the 
mode-choice is predominantly dependent on trip purpose (χ2: 
14.31, p-value: 0.02636). Figure 3 illustrates the mode-choice 
preferences of the private shared-mobility and micromobility 
modes through a stacked bar plot.  

Average trip length is useful in understanding the role of a 
particular mode within a set of modes available to a user. It de-
pends on several factors like time and price sensitivity of the 
customers and trip purpose. The odds ratio analysis (Table 5) 
suggests that e-bikeshare and CaBi are more popular for trips 
less than 5-min and trips between 15-30 min, respectively. 
While E-scooters are found to be popular for 5-15 min trips, this 
finding is less significant. 

 
Figure 3 Mode-choice of micromobility users based on trip purpose

Table 5 Trip-length based odds ratio analysis of mode-choice 
*Capital Bikeshare Dockless bikeshare E-bikeshare Scootershare

(n = 237) (n = 71) (n = 77) (n = 160)
Odds ratio 4.34 0.783 1.6
95% Conf. interval 2.212 < OR < 8.515 0.39 < OR < 1.573 0.8538 < OR < 2.998
Odds ratio 1.191 1.418 1.239
95% Conf. interval 0.798 < OR < 2.615 0.7946 < OR < 2.531 0.7143 < OR < 2.149
Odds ratio 2.062 1.913 2.514
95% Conf. interval 1.166 < OR < 3.647  1.108 < OR < 3.301 1.624 < OR < 3.892

Trip length Reference Service Parameter

< 5 min E-bikeshare

* Third generation bikeshare; 
Interpretation examples: 

1 The odds of choosing Dockless bikeshare for trips < 5 minutes are 5.5 times higher than that of Capital Bikeshare
2 The odds of choosing Capital Bikeshare for trips 15-30-minute duration are 2.237 times higher than that of Dockless bikeshare

5 - 15 min Electric scooters

15 - 30 min Capital Bikeshare
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3.4 Shared and Micromobility Mode-choice and Trip 
length 
Very little is known about the reasons behind the relative 

differences in consumer affinity for these shared micromobility 
systems. Users and non-users were asked to provide their opin-
ion on potential reasons for using different modes 'more' or 'less' 
often. While users perceived these modes as fun and time-sav-
ing alternatives, safety and disinterest remain major barriers to 
their patronage among both users and non-users Figure 4. 
Among all micromobility modes, e-scooters were significantly 
considered to be unsafe.  

Around 23% of the respondents considered e-scooters un-
safe, but a majority of them considered them to be fun (59%) 
and time-saving (51%). This observation complements our ear-
lier finding that e-scooters are more preferred for social and rec-
reational trip purposes. Among all micromobility modes, both e-
scooters and CaBi provide better-perceived incentives to the us-
ers than the other two modes included in the survey. However, 
CaBi appears to have added advantages of being perceived as 
more economical, fitness-promoting, time-saving, and easier to 
use than e-scooters.  

Anecdotal references from the survey respondents indicate 
that most CaBi users prefer not to use other modes due to their 
existing long-term membership. However, some users expressed 
their interest in using the e-scooters for social or recreational 
purposes occasionally. This observation reinforces our earlier 
deductions from the odds ratio analysis that CaBi members are 
more likely to use e-scooters occasionally than regularly. Fur-
thermore, several respondents indicated that the uncertainty in 
the dockless vehicles' availability at a specific location had re-
duced their interest in choosing those modes.  

Incentives
Capital 

Bikeshare 
(n=244)

Dockless 
Bikeshare 

(n=71)

E-bikeshare 
(n=89)

E-scooters 
(n=175)

Hassle free/ Easy 
to use 45% 25% 27% 39%
Economical 48% 21% 16% 23%
Time saving 45% 27% 39% 51%
Safe 11% 7% 6% 4%
Healthy 45% 20% 10% 7%
It's fun! 47% 30% 39% 59%

Barriers
Capital 

Bikeshare 
(n=440)

Dockless 
Bikeshare 
(n=440)

E-bikeshare 
(n=440)

E-scooters 
(n=440)

Not interested/ Not 
viable 36% 45% 44% 34%
Expensive 8% 13% 16% 18%
Time consuming 5% 2% 2% 2%
Unsafe 10% 8% 9% 23%
Traffic/Pollution 6% 4% 4% 7%

Most preferable
100% 80% 60% 40% 20%

Question: What makes you ride this micromobility mode more often?

Question: What makes you ride this micromobility mode less often?*

Scale
Least preferable

*Both users and non-users were asked to provide their opinion  

Figure 4 Heat chart of the user and non-user perceptions on individual 
micromobility mode 

4. DISCUSSION AND CONCLUSION 
Logistic regression results suggest that lower-income 

groups and younger adults are more likely to ride multiple mi-
cromobility modes. As each micromobility mode caters to dif-
ferent trip purposes and trip lengths, multimodality indicates the 
consistency of user reliability on micromobility modes for most 
of their travel needs, without drifting away to high-carbon 
modes. For example, survey responses suggest that e-scooters 
attracted users from personal cars (36%) and Uber/Lyft/taxi ser-
vices (22%). While younger adults have a higher likelihood of 
using e-scooters, women and medium-income groups preferred 
CaBi to e-scooters. Significant differences in trip lengths and 
trip purposes among different micromobility users indicate that 
each mode caters to the needs of specific groups of people. 
However, respondents were drawn away from these modes, pri-
marily due to safety and budget concerns. Such an observation 
indicates the need for more protected bike lanes, parking infra-
structure, and community outreach programs. 

The research findings can serve as a basis for cities to de-
ploy more detailed and large-scale surveys to understand the im-
pact of community emergencies on regional and local transpor-
tation networks. However, as the user preferences and percep-
tions tend to vary with geographic region, caution must be exer-
cised in extending the findings of this study to other regions.  
This study was conducted a few months before the COVID-19.  
As the pandemic is widely expected to change the travel de-
mand by traditional and micromobility modes, this study can 
potentially serve as a valuable baseline for evaluating the varia-
tions in mode-choice behavior of Washington DC micromobility 
users in the post-pandemic environment. 
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ABSTRACT 
For effective implementation of connected corridor applications, it is imperative to study the characteristics of the high-resolution connected corri-
dor data streams leveraged in smart city applications. In a previous effort, a smart city application – real-time corridor data-driven traffic simulation 
model, i.e., Digital Twin – is developed. Investigation of the corridor field volume data revealed the presence of data gaps. To address these gaps, 
deep Long Short-Term Memory (LSTM) Recurrent Neural Network univariate and multivariate volume imputation models are developed. In this 
paper, the impact of the developed model imputations on the digital twin generated travel times are investigated. Simulation runs are conducted for 
typical and atypical traffic, for three volume input cases: base (original volumes), univariate model imputations, and multivariate model imputa-
tions. For the given methodology it was seen that: 1) the travel times generated using multivariate imputations are the closest to that generated 
using base data, 2) the impact of imputations on travel times is focused on congested routes, and 3) the impact on travel time is minimal despite 
input volume overestimation on routes that have the capacity to accommodate higher volumes. These findings demonstrate the need to prioritize 
data streams based on the given application and underlying corridor conditions.  
 

Keywords: smart cities, connected corridor, long short-term memory, real-time simulation, traffic volume imputation 

1. INTRODUCTION 
Smart cities across the world utilize smart corridor testbeds 

to explore technology implementations [1, 2, 3, 4, 5]. Often, a 
smart corridor is equipped with communications technologies 
[3], enabling the transfer of significant data between vehicles, 
the infrastructure, and corridor management centers. These data 
can be in different forms, such as connected vehicle data provid-
ing high resolution instantaneous vehicle specific data and sig-
nal phase and timing data, vehicle counts from in-road or road-
side detectors, probe vehicle data such as that from INRIX [6], 
HERE [7], etc., to name a few. Smart corridor applications seek 
to convert these data into actionable information, to improve 
corridor performance. However, the presence of data gaps in the 
data streams can impair such efforts. Thus, it is imperative to 
develop data imputation methodologies as well as to understand 
the impact of such imputation on the application performance.  

In a previous effort the authors developed a smart corridor 
application, a real-time data-driven traffic simulation model, 
i.e., Digital Twin, for the North Avenue Smart Corridor in At-
lanta, Georgia [8, 9]. The Digital Twin, driven using high fre-
quency volume and signal data, is capable of dynamically 
providing corridor traffic and environmental performance 
measures [8, 9]. However, investigation of the corridor data 
streams revealed the presence of data gaps. To address the vol-
ume data gaps, bi-directional Long Short-Term Memory 
(LSTM) Recurrent Neural Networks (RNNs) univariate and 

multivariate imputation models were developed. Experiments 
were conducted to investigate the LSTM RNN model perfor-
mance under typical and atypical day conditions [10]. Of spe-
cific interest was exploring if supplementing historic data from 
the given data stream with the most recent data from similar 
data streams (multivariate model) provides superior predictions 
over utilizing only historic data (univariate model). Experi-
mental results indicated the potential for a multivariate LSTM 
RNN model to provide reasonable imputations on typical and 
atypical days [10].  

In this paper the reasonableness of the data estimations is 
explored by identifying limitations and evaluating the appropri-
ateness of the imputation models to drive the Digital Twin. A 
simulation experiment is conducted using the Digital Twin to in-
vestigate the impact of the univariate and multivariate model 
imputations on generated travel times for selected corridor 
routes.  

2. LSTM RNN MODEL DEVELOPMENT 
RNNs are a variant of Neural Networks, capable of utilizing 

the “memory” of previous event data to predict the next values 
in a sequence [11]. However, RNNs can suffer from the vanish-
ing gradient problem in backpropagation implementation [12]. 
This may be a drawback when accounting for long-term depend-
ency in a sequence is crucial to prediction accuracy. LSTM 
RNN [13] seeks to address this issue through the inclusion of a 

https://journals.gmu.edu/index.php/jmms
https://doi.org/10.13021/jmms.2020.2929
http://atpio.org/


J. of Modern Mobility Systems 01 (2020)  Saroj, Guin and Hunter  
 

Mason Publishing 120 

 

 

‘memory’ cell component along with gates to regulate the 
memory cell value [14]. A variant of LSTM RNN is bidirec-
tional LSTM RNN (BLSTM), where output mapping may learn 
from both past and future information [15].  

In the previous study [10], deep bidirectional LSTM RNNs 
were used to develop univariate and multivariate volume time 
series prediction models for six selected detectors on three ap-
proaches on the North Avenue corridor, a 2.3-mile long actuated 
corridor, as shown in Figure 1. Each of these approaches has 
two lanes, referenced as L_1 and L_2. The multivariate models 
are trained using the historic data of the detector experiencing 
data loss as well as data from a corridor detector drawn from a 
cluster of detectors that have been identified to have a similar 
time series data pattern using cluster analysis. For a comprehen-
sive literature review on time series similarity measures, traffic 
data imputation methodologies, and the LSTM RNN model de-
velopment process, the reader is referred to Saroj [10]. 

3. EXPERIMENT DESIGN 
A simulation experiment is designed to study the impact of 

the previously developed univariate and multivariate prediction 
models on simulation generated performance measures for a 
typical weekday, Monday, March 18th, 2019, and a weekday 
with atypical traffic conditions, Monday, May 27th, 2019, (Me-
morial Day). For each of these days the PM peak hours (3 PM to 

6 PM) are simulated for three traffic volume sets, input at the 
three corridor approaches: 1) base traffic condition (original vol-
ume), 2) univariate model imputations, and 3) multivariate 
model imputations. A discussion of the base traffic volumes and 
signal timings for each experiment day may be found in [9]. The 
second and third volumes cases assume a three-hour data gap in 
the base traffic data at the three study approaches, utilizing the 
imputed volumes for these locations. Volumes during simula-
tion run-time are imputed (i.e., predicted) as would occur in a 
real-time event, that is, the simulation model and algorithms are 
only fed data up to the equivalent wall clock time, i.e., the actual 
time in the field. Imputations are then based on the current wall 
clock (real-time) data and previous (historical) data. For each of 
the three data cases, for each of the two traffic days, ten repli-
cate simulation trials are run to evaluate the impact on travel 
times on the nine corridor routes, i.e., the three studied side-
street approaches and the six mainline routes (Figure 1).  

4. RESULTS AND DISCUSSION 
The developed univariate and multivariate models for each 

of the six detectors are used to predict volumes from 3 PM to 6 
PM. Table 1 presents the performance error measures for the 
model predictions.  

 
  

 
 

Figure 1. LSTM RNN model developed for three North Ave. corridor approach locations and the nine studied routes [10] 
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Table 1. Error measures for LSTM RNN model predictions for 3 PM to 6 PM. 

Detector Model Type March 18th (Typical Day) May 27th (Atypical Day) 
MAE RMSE Std. Dev MAE RMSE Std. Dev 

State-EB-L_1 Univariate 5.2 6.3 6.3 20.6 22.7 9.6 
State-EB-L_1 *Multivariate** 5.0 6.1 6.1 5.2 6.1 4.0 
State-EB-L_2 *Univariate 4.8 6.0 6.0 32.0 33.1 8.4 
State-EB-L_2 Multivariate** 5.4 7.24 7.2 16.4 18.2 7.8 
Connector-SB-L_1 Univariate 32.1 38.3 21.5 40.5 42.9 16.1 
Connector-SB-L_1 *Multivariate** 19.4 26.2 20.7 7.0 8.2 8.0 
Connector-SB-L_2 *Univariate** 8.7 11.1 10.7 12.2 15.0 13.0 
Connector-SB-L_2 Multivariate 10.0 12.8 12.8 23.1 25.1 9.8 
Peachtree-SB-L_1 *Univariate** 6.4 8.6 7.4 9.2 11.1 8.1 
Peachtree-SB-L_1 Multivariate 7.2 8.6 7.8 9.8 11.3 7.9 
Peachtree-SB-L_2 *Univariate** 6.9 8.4 7.5 4.6 6.0 5.6 
Peachtree-SB-L_2 Multivariate 8.3 10.6 8.0 12.5 13.3 5.1 

Notes: 
* An asterisk indicates lower error values among the two model types on typical day predictions 
** Two asterisks indicate lower values among the two model types on atypical day predictions 
MAE: mean absolute error, RMSE: root mean square error, Std. Dev: Standard Deviation of Errors 

 
It is observed that the multivariate and univariate predic-

tions tend to be similar on the typical day, with univariate errors 
often lower than that of multivariate, consistent with previous 
research findings [10]. On the atypical day, it is expected that 
the multivariate model will provide improved imputation values 
compared to the univariate model, as the historical data is not 
consistent with current conditions. This is seen to be true for 

most detectors. However, at Connector-SB-L_2 and Peachtree-
SB-L_2 the univariate prediction errors are observed to be much 
lower than multivariate prediction errors. For example, for Con-
nector-SB-L_2 Figure 2 shows the plots for observed traffic vol-
umes from midnight to 6 PM for each day along with the uni-
variate and multivariate model predictions from 3 PM to 6 PM.  
 

 

 
Figure 2. Model predictions for Connector-SB-L_2 starting at 3 PM. 
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As seen in Figure 2, one reason for the weaker performance 
of the multivariate model at Connector-SB-L_2 is a poor corre-
lation between the traffic pattern on the matched detector and 
the given detector. The identification of detectors with similar 
patterns was undertaken utilizing data streams from multiple 
“typical” days [10]. This raises a possibility that detectors that 
are reasonably correlated under typical conditions may not be 
well correlated under atypical conditions. Thus, future 
improvements to the method may be achieved by identifing 
different matching detectors for different conditions.  

In further exploring the simulation performance given the 
imputed data it is noted that the field volume data was available 
in six-minute bins. Therefore, the imputation was also set to 
generate six-minute binned data. Thus, in the simulation 
implementation the volume data is entered into the model in six-
minute intervals, randomly distributed (shifted poisson 
distribution interarrival times) over the interval length. 
However, if the entry link is oversaturated (i.e., a vehicle queue 
extends to the link entrance point) the new vehicles will not be 

able to enter the network during their set interval, and will 
instead be held until space becomes available. Figure 3 shows 
the volumes that entered the simulation model at Peachtree St. 
SB for the ten univariate and multivariate replicate trials, for the 
typical and atypical day scenarios, as well as the imputed vol-
ume that sought to enter. A low difference between the imputed 
and processed entry volume per six-minute interval suggests un-
der-saturated conditions. However, the variation in the March 
18th volume entry counts for the multivariate imputations sug-
gests that this approach operates near saturation state during the 
typical day PM peak period, with the slightly higher multivari-
ate imputed volumes sufficient to create over-saturated condi-
tions. The variation in entry volumes given the univariate im-
puted values is significantly less, as the imputed volumes are 
lower than those of the multivariate model (Figure 4). Another 
clear observation from Figure 4 is that both imputation ap-
proaches have a tendency to smooth the volumes relative to the 
field conditions.  
  

 

 
 

Figure 3. Imputed vs Entry volume (10 replicate seeds) for Peachtree St. SB approach volumes in the six-minute bins. 
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Figure 4. Approach volume for three cases for 3-6 PM at Peachtree St. SB. 

4.1 Impact on Digital Twin Generated Travel Time 
Figure 5 presents box plots of the 85th percentile travel 

times obtained from the replicate trials at the nine routes, for the 
three data input scenarios, for the typical and atypical days. It is 
observed that for the typical and atypical scenarios, travel times 
simulated using the multivariate imputations are generally closer 
to that of the base day than those simulated using the univariate 
imputations. For 8 of 9 routes under typical conditions multivar-
iate provide closer results than univariate, reducing errors on av-
erage by 4%. Under atypical conditions, also for 8 of 9 routes, 
multivariate provides closer results, reducing errors on average 
by 3%. 

 The impact of underlying corridor demand, i.e., saturated 
vs under-saturated, can be seen on the simulated travel times. 
For example, lower travel time variation is seen on the atypical 
traffic day across cases, likely due to the lower holiday traffic. 
In addition, on Route 19, there are observable travel time differ-
ences for the three cases under typical conditions likely due to a 
saturated traffic state for the PM peak on the typical day versus 
the under-saturated holiday traffic. The low travel time differ-
ences for typical and atypical holiday traffic on Routes 75 and 
84 are a result of under-saturated conditions on both days, even 
though for these routes the univariate imputation provides 
higher volume estimates than both the multivariate model and 
base data on the atypical day. 

 
 

 
(a) Typical traffic 

 
(b) Atypical traffic day 

Figure 5. Boxplots of 85th percentile travel time at the nine study routes for (a) March 18th and (b) Monday, March 27th 
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Given the under-saturated conditions the overestimated vol-
umes were not sufficiently erroneous to impact travel times. 
However, over-estimation of volumes is likely a factor that con-
tributed to the increased travel time for the univariate model 
scenario compared to the base case on Routes of 57, 58, 59, and 
60 (Figure 5b). Here, the volume estimation error combined 
with the underlying near-saturation conditions were sufficient to 
negatively influence the predicted travel times.  

These observations clearly indicate that when developing 
smart applications, it is critical to identify those locations with 
the most potential to influence results. Key attributes of the ap-
plications, such as identification of a matching detector in the 
given example, should be assured as well as increased data con-
trol and data quality efforts at these locations. 

5. CONCLUSIONS AND FUTURE WORK 
This effort investigated the impact of the previously devel-

oped LSTM RNN multivariate and univariate model imputa-
tions on Digital Twin generated travel times. The results indi-
cate that for the studied typical and atypical traffic, the multivar-
iate imputations lead to simulated travel times that are closer to 
that of the base day. However, additional improvements in the 
multivariate method may be achieved by improved matching de-
tector selection. Next, the importance of the underlying corridor 
conditions, i.e., saturation level, is observed. It is demonstrated 
that when developing smart applications both the imputation 
methodology and the local conditions must be considered. Spe-
cific to this effort, to improve the performance of the LSTM 
RNN models, future investigations may consider additional 
atypical training and test data as well as hyperparameter tuning.  
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ABSTRACT 
With increasing congestion and associated challenges to manage the transportation network, intelligent transportation systems (ITS) have gained 
popularity due to their data-driven approach and application of advanced technologies. A variable speed limit (VSL) is a popular ITS-based solution 
which uses dynamic speed limit to promote harmonization along a corridor. However, not much was done in identifying road links and influencing 
variables for their applicability. Therefore, this paper focuses on examining road link-level data to identify road links and variables influencing the 
applicability of VSL signs. A multivariate cluster analysis was first used to identify potential road links susceptible to speed variation for the imple-
mentation of VSL. A supervised machine learning algorithm, forest-based classification and regression, was then used to model and examine the 
influence of average annual daily traffic (AADT), historical speed of the road link, and the speeds of upstream and downstream road links on the 
average speed of the corresponding road link. Modelling and validation were performed using data for Mecklenburg County, North Carolina, USA, 
for road links including all kinds of speed variation. 

Keywords: Intelligent transportation systems, Variable speed limit, Supervised machine learning, Big data. 

1 INTRODUCTION 

The posted speed limits on roads are typically determined 
based on the road design, operating speed, geometry, and type 
of the facility [1]. The Federal Highway Administration 
(FHWA) describes traffic congestion as a direct measure of ve-
hicle speeds [2], referred to as speed in this paper. A consistent 
and significant decrease in speeds on a road link indicates se-
vere recurring congestion on the road link [3]. 

Dynamic message signs with variable speed limits (VSLs) 
is a widely explored intelligent transportation systems (ITS)-
based solution to regulate the speeds on highly congested road 
segments, in work zone areas, during adverse weather condi-
tions, or during incidents on a road [4]. The VSL control strat-
egy also improves mobility and safety in adverse weather condi-
tions [5]. 

The VSLs are estimated dynamically based on the traffic 
condition and optimized to improve the road capacity. Research-
ers in the past proposed various algorithms to compute the 
VSLs. They include simulation-based approach [6], cellular 
transmission models using bottleneck information [7], macro-
scopic simulation [8], algorithms like fuzzy logic with simula-
tion-based validation [9], and model predictive control [10]. 

One of the most important aspects of the VSLs is the extent 
to which the speed limit is changed. A significant increase or 
decrease in the speed limits might raise a concern. Many re-
searchers set thresholds while modelling the speed limit. Abdel-

Aty et al. [6] used 5 mph increments for the road facilities while 
Hegyi et al. [11] considered a threshold of ± 6.2 mph to ensure 
safer stream performance. State agencies implementing the VSL 
signs used thresholds up to 7.5 mph (New Mexico), 30 mph 
(New Jersey), 10 mph (Washington State), or increments of 10 
mph (Nevada) [4]. From a safety perspective, the maximum 
changes to the speed limit of a facility could be up to 10 mph 
[6]. 

The existing VSL signs use algorithms to generate the 
speeds needed for the corresponding time of the day and day of 
the week. Some of the simplest algorithms used include the dis-
play of speeds in increments of 5 mph based on the 85th percen-
tile speeds [12]. Assigning the algorithm or technique to im-
prove the traffic flow is one of the most common challenges due 
to its dynamic nature. Further, speeds of the upstream and 
downstream road links have an influence on a road link speed 
and should be accounted for in the VSL design process [12]. 

VSL may not be applicable to all the road links. It is im-
portant to analyse the patterns in travel times and examine the 
historical data when computing the speeds for VSL signs. Past 
research on the dynamic travel time predictions used pattern 
recognition using the probe data [8]. The VSLs from simulation 
models could be different from what may be observed using the 
field data. It is, therefore, important to identify the road links 
which are susceptible to higher variation in speeds using the 
field data. 

Supervised machine learning is designed to forecast using a 
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training dataset and is applicable to even model non-linear rela-
tionships. It has the potential to identify the road links with a 
significant variation in speeds from the posted speed limits and 
is considered appropriate for this type of “big data” application. 
Therefore, the objectives of this research are to compute the var-
iability in speeds, identify vulnerable road links, and apply a su-
pervised machine learning algorithm to examine the influence of 
selected explanatory variables on speed patterns. 

2 STUDY AREA, DATA, AND RESEARCH 
METHOD 

Mecklenburg County in the State of North Carolina, USA 
was considered as the study area for this research. The travel 
time data and their corresponding network data such as the an-
nual average daily traffic (AADT) and functional class of the 
road were considered for analysis. 

The travel time data was obtained from Regional Integrated 
Transportation Information System (RITIS) with support from 
the North Carolina Department of Transportation (NCDOT). 
The data consists of raw travel times with samples collected at a 
1-minute interval for each road link identified by the traffic 
message channel (TMC) code. The raw travel time data for 
March of the year 2019 during the peak period was processed 
using Microsoft SQL Server. The 85th percentile speed and the 
average speed of considered road links were computed, and the 
variations were examined for the corresponding analysis hour. 
Furthermore, data associated with the corresponding upstream 
and downstream road links were also considered for the analy-
sis. 

The research method adopted is two-fold. Firstly, cluster 
analysis was performed to identify the groups of road links with 
speed variations by comparing the 85th percentile and average 
speeds. Secondly, the influence of selected explanatory varia-
bles on the average speed of a road link was examined using 
forest-based classification and regression. 

The K-means clustering was used in this research. The al-
gorithm establishes thresholds to minimize the heterogeneity in 
speeds. It identifies the initial seeds randomly based on the num-
ber of allocated clusters, while the other seeds are typically allo-
cated by employing a random component [13]. 

Datasets for the forest-based classification and regression 
analysis comprised of all the road links, road links with low-
speed variation, and road links with high-speed variation. These 
separate datasets were considered for modelling and analysing 
the importance of the selected explanatory variables. 

The forest-based classification and regression algorithm 
trains the model data [14], estimates the dependent variable (the 
average speed in this research), and helps understand the speed 

patterns of roads using the selected explanatory variables. The 
mechanism of the forest-based classification and regression in-
cludes the usage of hundreds of randomly generated trees to pre-
dict the average speed. Hence, the result from each tree contrib-
utes to the overall accuracy of the model. For higher data points, 
the tree-based mechanisms are suggested [14]. 

The selection of explanatory variables for analysis and 
modeling plays a major role in the predictability and under-
standing their influence on the dependent variable. All the ex-
planatory variables are typically selected to develop a model and 
assess their influence on the dependent variable in forest-based 
classification and regression [15]. Therefore, the correlation be-
tween the explanatory variables was not examined in this re-
search. 

The influence of the explanatory variables is computed 
based on the prediction accuracy using the training dataset. For 
example, each decision tree in the model uses a certain portion 
of data to train and generate the outcomes. The remaining data 
is used to compute the influence and importance of each explan-
atory variable in predicting the dependent variable, by estimat-
ing the decrease in the prediction accuracy [15]. In general, a 
higher value indicates a higher degree of the explanatory varia-
ble’s importance in the model prediction. 

Modelling was performed with 80% of the data and the re-
maining 20% of the data were used for the validation. The func-
tional class of the road, AADT, historical average speed of the 
road link, downstream road link average speed, and upstream 
road link average speed are considered as the selected explana-
tory variables. 

3 RESULTS AND DISCUSSION 

Data for 563 road links in the study area were considered 
for analysis in this research. The study area and the road links 
are shown as Figure 1. Tables 1 and 2 summarize the descriptive 
statistics (minimum, median, mean, maximum, and standard de-
viation) and frequency distribution of the variables considered 
in this research, respectively. 
3.1 Cluster Analysis Results 

A total of six clusters were defined by using the optimal R2 
value. The box whisker plot (Figure 2) shows the clusters along 
with the variations associated with the 85th percentile speed and 
the average speed for the analysed road links. The low-speed 
variation comprised of clusters with variation ranging from -7.8 
mph to 4.0 mph. The remaining clusters with large variation in 
the speed on negative side were categorised as “high-speed vari-
ation” dataset. The spatial distribution of road links based on the 
defined clusters are shown in Figure 3. 
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Figure 1. Study area 

Table 1. Descriptive statistics of data 

Variable Min. Median Mean Max. Std. 
Dev. 

Average speed 7.14 40.77 43.83 73.40 16.56 
85th percentile 
speed  14.00 42.00 45.57 70.00 15.47 

Difference be-
tween the 85th per-
centile and aver-
age speeds 

-22.40 0.13 1.74 31.40 7.80 

Historical average 
speed 5.80 40.57 43.84 73.40 16.33 

Upstream average 
speed 7.47 40.00 43.61 73.73 16.63 

Upstream refer-
ence speed 12.00 42.00 45.37 70.00 15.56 

Downstream aver-
age speed 7.14 40.47 43.41 74.47 16.44 

Downstream refer-
ence speed 10.00 42.00 45.33 70.00 15.37 

AADT 3700 52000 73160 183000 50626 

Table 2. Frequency distribution by facility type 

Variable Categories Frequency Percentage 

Functional 
class 

1: Interstate 242 42.98 
2: Principal Arterial 

- Other Freeways 
and Expressways 

15 2.66 

3: Principal Arterial 
- Other  278 49.38 

4: Minor Arterial 27 4.80 
5: Major Collector 1 0.18 

Number of 
through lanes 
(in both the 
travel direc-

tions) 

2 50 8.88 
3 2 0.36 
4 255 45.29 
5 8 1.42 
6 129 22.91 
8 104 18.47 

10 11 1.95 
12 7 1.24 

 



J. of Modern Mobility Systems 01 (2020)  Duvvuri, Mathew, Gouribhatla, and Pulugurtha  
 

Mason Publishing 128 

 

 

 
Figure 2. Multivariate cluster analysis results 

 
Figure 3. Spatial distribution of clusters in the study area 

 
3.2 Classification and Regression Results 

The results from the application of forest-based classifica-
tion and regression using the three datasets are summarized in 
tables 3 and 4. 

Table 3 shows the importance of the selected explanatory 
variables from the model results in terms of percentages. The 

historical average speed is the most important explanatory varia-
ble, followed by the upstream and downstream road link aver-
age speeds, in the model associated with all road links dataset. 
In the low-speed variation dataset-based model, the functional 
class followed by the historical average speed and AADT are 
the most important explanatory variables. However, the model 
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results from the dataset with high-speed variation dataset indi-
cate that all the selected explanatory variables are important, 
with the historical average speed of the road link being the most 
important explanatory variable. 

Table 3. Explanatory variables and their importance in terms of per-
centages 

Explanatory variable 
Modelling dataset 

All 
data 

Low-speed 
variation  

High-speed 
variation 

Functional class 7.57 45.05 5.61 
AADT  1.25 18.86 14.59 

Historical average speed  47.46 22.29 40.49 
Upstream average speed 26.48 9.85 20.57 

Downstream average 
speed 17.25 3.96 18.74 

Table 4. Predictability results 

Parameter / 
Measure 

Modelling dataset 

All data Low-speed 
variation 

High-speed 
variation 

R2 0.94 0.97 0.92 
Mean percentage 

error (%) -2.96 -1.38 -11.96 
Mean absolute per-
centage error (%) 11.64 6.11 20.33 
Root mean square 

error (in mph) 4.88 3.04 6.77 
 

The predictability results (Table 4) from the forest-based 
classification and regression indicate a high R2 value (>0.90) for 
all the three models (which explains the variability in each da-
taset). The mean percentage error varied between -1.38% and -
11.96%, while the mean absolute percentage error varied be-
tween 6.11% and 20.33%. The root mean square error varied be-
tween 3.04 mph and 6.77 mph. The errors are highest for the 
high-speed variation dataset, followed by all the road links da-
taset. This could be attributed to the low sample size and/or var-
iations in the explanatory variables. 

4 CONCLUSIONS 
This research explores cluster analysis and the plausible 

application of machine learning algorithms like the forest-based 
classification and regression to analyse the speed patterns on 
road links and assess the applicability of VSLs for congestion 
mitigation and transportation network management. Travel time 
data and selected network characteristics for road links in 
Mecklenburg County were considered in this research. The 
multivariate cluster analysis was performed to identify groups of 
road links with varying speeds by comparing the 85th percentile 
and average speeds. Datasets with all road links as well as road 
links with low- and high-speed variation were considered to 
model using the forest-based classification and regression 
algorithm and examine the influence of the selected explanatory 
variables. 

The functional class of a road and AADT are the most 

important explanatory variables in the models associated with 
low- and high-speed variation datasets. However, the functional 
class of a road and AADT are the least important explanatory 
variables in the model associated with all the road links dataset. 
The historical average speed of the road link and upstream road 
link average speed are the most important explanatory variables 
irrespective of the dataset considered for modeling in this 
research. 

The R2 values are high and errors are relatively low, 
indicating the predictability and potential applicability of 
supervised machine learning algorithms for determining VSLs. 
The relatively high errors for high-speed variation dataset 
indicate that other explanatory variables and more data should 
be used for analysis and modeling. Furthermore, thresholds for 
the applicability of VSLs by area type and functional class of a 
road should be explored in the future. 

This research proposes and illustrates the working of a 
method for identifying vulnerable links and implementing VSLs 
using travel time data and supervised machine learnig. 
Researching the applicability of VSLs using larger travel time 
datasets for even more number of links with varying road and 
traffic characteristics, by day of the week and time of the day, 
merits further investigation. 
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ABSTRACT 
We scrutinize the reactions of casual users of bikesharing services to fare menu, product pricing, and promotion. We hypothesize that by introduc-
ing value-based pricing into the fare-option mix, revenues can be increased and therefore enhance the economic sustainability of the bikesharing 
system. We conducted a controlled experimental survey of 157 current and potential bikeshare users across six cities in the United States. The sur-
vey registered the respondents’ choice of fare options in two groups: one with a binary choice set (control group) and the other with an additional 
value-priced choice (experimental group). Evidence points to users’ perception of value in bikeshare fare options would contribute to variations in 
revenues for the same ridership levels. Revenue projections and statistical tests showed that the introduction of value-based pricing options could 
lead to significant revenue increases. Furthermore, how the fare options are presented to the user would have an impact on users’ reception to the 
value-based pricing options in the product mix. The study results could be useful for numerous bikeshare systems in re-examining their product 
mixes and how they are presented to the users on websites, mobile apps and kiosk locations. 

Keywords: decoy pricing, value-based pricing, behavioural economics, bikeshare, pricing, micromobility, shared mobility, revenue, ridership 

1 INTRODUCTION 

Like transit fare, the cost of the ridership of a bikeshare trip 
plays a significant role in the mode choice behaviour of users 
and the system’s economic sustainability. While subsidies are 
important, a healthy farebox recovery is the most essential in-
gredient for the economic sustainability of transportation ser-
vices that are operated in the public interest (such as transit and 
bikesharing services). To this effect, bikeshare service providers 
routinely make changes to pricing structure and fare menus for 
all user-types.  

When making changes to bikeshare pricing or introducing a 
new fare option, it is important to consider users’ perceptions of 
the economic value of the new product on its own and in rela-
tion to the prices of other products in the ‘product line’ [1]. Very 
few studies addressed the infrastructure and pricing policy im-
plications on general cycling usage [3]. Despite the importance 
of pricing to bikeshare patronage, only a limited number of stud-
ies focused on the impact of a well-defined pricing strategy on 
revenue and ridership [1,2,5-8]. 

1.1 Objective 
In the marketing parlance, the essential elements of a mar-

keting plan, namely: product, price, place, and promotion 
(known as 4Ps of the marketing mix), help develop marketing 
strategies and tactics [9]. We theorize that choices of bikeshare 
users, like that of consumers of any other commercial product, 
are influenced by perception of value and behavioural econom-
ics. In this research, we focus on service options (products), 
pricing, and presentation of public bikesharing systems.  

We hypothesize that, by introducing value-based pricing op-
tions into the product mix, bikesharing revenues can be in-
creased. We test this hypothesis by conducting a controlled ex-
perimental survey of 157 current and potential bikeshare users 
across six cities in the United States. We also examine the pro-
motional aspects of bikeshare fare options by testing the revenue 
impacts of user choices when the same product menus are pre-
sented in different formats.  

2 MOTIVATION 

Bikeshare fare options and subscription plans for casual us-
ers (temporary users with no long-term commitment) and mem-
bers (also known as subscribers) vary from system to system. 
They also change over time. The fare options for these two 
prominent user types represent the ‘product’ in the 4P-concept 
as applied to bikesharing. The market share of ridership and rev-
enue for members and casual users varies across systems. For 
example, members account for 72% of ridership and 29% of the 
revenue at Capital Bikeshare (CaBi), while casual users account 
for only 28% ridership and yet 71% of its revenue [8]. Similarly, 
the revenue split between members and casual users for Citi 
Bike (NY) is 32.3% and 67.7% [10].  

Consumer behaviour in transportation mode-choice was first 
modelled in the early 1970s [11,12]. Though consumer-pricing 
research shows that product(s) and pricing mix is an essential 
determinant of customer patronage and revenues, consumer-ori-
ented research in pricing bikesharing services is rare. A non-sci-
entific polling of three bikeshare providers in the USA indicated 
that decisions related to bikeshare product lines and pricing are 
often arbitrary, have minimal or no scientific basis, and based 

https://journals.gmu.edu/index.php/jmms
https://doi.org/10.13021/jmms.2020.2709
mailto:mvenigal@gmu.edu
https://atpio.org/
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on local political considerations. At the time of conducting this 
research, scooter-sharing is in the nascent stages of deployment 
and its impact on bikesharing was not considered. 

For this research, we define value-based pricing as the strate-
gic process of pricing a product or service that offers economic 
value to consumers. The value may be absolute or relative to 
other products in the choice set, and it may be real or perceived.  
Because it considers the customer perspective, value-based pric-
ing increases the likelihood of maximizing revenues from the 
same set of customers simply by altering their product-selection 
from the given product mix [13].  

Table 1 presents bikeshare product lines and their prices 
(fare options) at the seven largest bikeshare systems in the 
United States. The websites of all these systems emphasize that 
the annual membership is the “best value” option for users. 
However, only two systems offer a 3-day pass (valid for 36-
hours after purchase), and the monthly pass option is not availa-
ble at two of the systems. Although casual users account for a 
significant share of revenues [2,8], none of these systems appear 
to be emphasizing a “best value” option for casual users.  

These observations led us to asking the following questions: 
1. Does the product-mix itself have an impact on which op-

tion bikeshare consumers (especially casual users) choose 
and, therefore, on system-wide revenues? 

2. If product-mix has an impact, what would be a value-
based pricing strategy and the optimal product mix for 
bikeshare services? 

Kaviti et al. partially addressed these issues in their study on 
the impact of the launch of a single trip fare (STF) product for 
$2/trip on the revenue and ridership of CaBi at the jurisdiction 
level in the metro Washington DC area [5]. The study showed a 
significant increase in casual user ridership after the introduc-
tion of STF. In an analysis conducted at individual station-level, 
Venigalla et al. observed that the introduction of STF led to a 
significant increase in casual user ridership, coupled with a posi-
tive growth rate; and a significant decrease in revenue per ride 
with a negative growth rate [1]. The research presented in this 
paper builds on the studies by Kaviti et al. [5] and Venigalla et 
al. [1].  

3 REACTIONS TO VALUE-BASED PRICING 

A notable gap exists in literature with respect to under-
standing user behaviour towards bikeshare product pricing. Lit-
erature in consumer product pricing presents numerous exam-
ples of how to expose the relative value through such behav-
ioural economics considerations as decoy pricing [22-24], 
value-based pricing, and menu-engineering [25,26]. For exam-
ple, restaurants design their wine menu based on a widely 
known discovery that the second lowest-priced wine is usually 
the best seller on the wine list [27]. Ariely illustrated that by in-
troducing a decoy option within the product mix might increase 
revenues [28]. Ariely’s experiment (Table 2) divided the sub-
scription options for The Economist magazine into two choice 
sets (ACS1 & ACS2). Two separate groups of 100 students at 
Massachusetts Institution of Technology were asked to select a 
subscription from one of the choice sets given to them.  

As the results of the Ariely’s experiment indicate, the hypo-
thetical revenue from ACS2 is 43% higher than that of ACS1. In 
this experiment, the mere introduction of a decoy in ACS2 has 
unlocked the value in one of the two other options. Thus, it is 
conceivable that a carefully designed choice-set of fares will in-
fluence the behaviour and choices of bikeshare consumers to-
wards increasing the revenues. We tested two versions of a con-
trolled survey that is similar to Ariely’s experiment. Both ver-
sions had the same questions on user demographics (gender and 
income), prior experience with bikeshare, and willingness to pay 
for a regular subscription in both versions. However, the choice-
set (CS) of fare options is different for both versions. 

To assess users’ perception of the relative value of fare op, 
the following question and the associated information were in-
cluded in the survey form as the lead to a choice set (CS).   

If bikeshare is/were available in the city where you work 
OR in the city you are visiting for sightseeing for a weekend, 
which fare option would you choose? Assume you can pretty 
much go wherever you want using bikeshare, and the weather is 
not an issue. Also, there will be a usage fee for usage above 30 
min. 

  

Table 1 Product lines and prices at the seven largest bikeshare systems in the USA 

 For Casual Users  
 

Subscription Membership 
 

Public Bikeshare System Single Trip Fare 
(STF) 

24-hour pass 
(Daily Pass) 

3-day pass 
(Multiday Pass) 

30-day pass 
(Monthly Pass) 

365-day pass 
(Annual Pass) 

CitiBike1,4 (New York, NY) $3.00 $12.00 $24.00 NA $169.00 
Divvy4 (Chicago, IL) $3.00 $15.00 NA NA $99.00 
Capital Bikeshare4, CaBi (Washington, DC) $2.00 $8.00 $17.00 $28.00 $85.00 
Metro (Los Angeles, CA) $1.75 $5.00 NA $17.00 $150.00 
Blue Bikes2,4 (Boston, MA) $2.50 $10.00 NA $20.00 $99.00 
Nice Ride4 (Minneapolis, MN) $2.00 $6.00 NA NA $75.00 
Bay Wheels3,4 (San Francisco, CA) $2.00 NA NA $15.00 $149.00 

1 Operates in New York City and Jersey City, NJ. The largest Bikeshare provider in the USA 
2 Previously known as Hubway. Rebranded as Blue Bikes in March 2018 
3 Previously known as Go Bike (by Ford) and rebranded in June 2019 as Bay Wheels 
4 Operated by Lyft or its subsidiary company Motivate for the bikeshare provider in the city/region 

(Source: Bay Wheels [15]; Blue Bikes [16]; Capital Bikeshare [17]; Citi Bike [18]; Divvy [19]; Metro Bikeshare [20]; and Nice Ride [21]) 
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Table 2 Ariely’s experiment on decoy pricing for subscription to The Economist magazine 

Subscription 
Option Description Annual 

Price 

Survey responses 
 

ACS1 ACS2 
1 Web only subscription to economist.com  $59 68 16 
2* Print only subscription to “The Economist”  $125 Not given 0 
3 Subscription to printed copy of “The Economist” + web subscription to economist.com $125 32 84 

*Decoy option Total revenue Σ (Price x Responses) $8,012 $11,444 
 (Source: Ariely [28]) 

The list of fare options presented in the choice sets is de-
scribed in the survey forms as follows:  

1. A bunch of single-trips, each 30-min trip costing $2  
2. 24-hour pass for an unlimited number of 30-min trips, 

costing $8 
3. 3-day pass for an unlimited number of 30-min trips, 

costing $17 
Version 1 (CS-1) displays only fare options 1 and 2. In the 

real world, it replicates the choice sets (not the prices) that are 
currently available for riders at Divvy, Metro, Blue Bikes, and 
Nice Ride systems (Table 1). Version 2 (CS-2), which displays 
all three options, replicates the choice sets available at CaBi and 
Citi Bike. 

Both versions of the survey were randomly and evenly dis-
tributed to the attendees during a lecture series on bikeshare 
pricing at six different universities across USA (Table 3). Even 
distribution of respondents between the two choice sets would 
ensure equal allocation of total ridership between the sets. The 
respondents (n=157) included full- and part-time students, fac-
ulty, staff, and other seminar attendees at the six universities. 
When taking the survey, the respondents did not know that two 
versions of the questionnaire exist. Analysis (χ2 test results) pre-
sented in Table 3 show that the respondent choices are inde-
pendent of their gender, income, prior bikeshare experience, or 
location.  

For estimating revenues using the survey data, we assumed 
that a typical casual user makes an upfront decision to accom-
modate his/her travel needs with only one of the fare options 
available, with a limit of three or fewer trips. The reasoning for 
limiting the number of single trips (ST) purchases to three is that 
purchasing a 24-hour pass for $8 for unlimited rides per day 
would make more economic sense than purchasing four or more 
single trips at $2 each. Whichever may be the fare option pur-
chased, some casual users might only use bikeshare once (one 
single trip, or OST), while others may take dual single trips 
(DST) or triple single trip rides (TST). Table 4 illustrates nor-
malized revenues for the DST scenario.  

Revenue estimates were made for three extreme cases in 
which every STF buyer would make either only one, two or 
three trips (i.e., 100% of STF trips would be either OST, DST or 
TST). Figure 1 illustrates revenue estimates for OST and TST 
(calculations are shown in Table 4 for DST). For each of the 
three scenarios and at each location, revenue estimates for the 

choice set with the 3-day pass option (CS-2) are significantly 
higher (α = 5%) than estimates for CS-1. The observed increase 
in estimated revenues ranges from 25% to 84%. The 95% confi-
dence interval band for normalized revenues narrows and con-
verges towards the estimated mean as the number of single trips 
increases from one to three (Figure 2).  

These observations imply that the value-based pricing strat-
egy for bikeshare pricing has a consistently positive impact on 
revenues, an impact that is comparable to that of decoy pricing. 
While decoy pricing may be perceived as ‘deceptive marketing’ 
or even ‘profiteering,’ value-based pricing has the potential to 
be well received by bikeshare users. 

4 PRESENTATION OF FARE OPTIONS 

The casual bikeshare users in the United States typically re-
ceive information on the product mix through websites, kiosks, 
and mobile apps. For the presentation aspect (the fourth P in 4Ps 
of the marketing mix), we hypothesized that, just as the compo-
sition of the product mix affects revenues, presentation of fare 
options at various points of sale may also impact revenues. 

To test this hypothesis, two fictional web designs were de-
veloped. The first design mimics actual fare-selection screens on 
websites of Capital Bikeshare and Citibike. This design requires 
the user to navigate to a second page to discover a value-priced 
option. The second design displays all three casual fare options 
on the same page (Figure 3).  

In a short 30-second survey, potential casual users at four 
different venues were asked to choose a fare from the two de-
signs. To avoid any sample size bias, an attempt was made to 
distribute the sample evenly between two designs. As the results 
in Table 5 indicate, user selection of fare option between the 
two designs is independent of the location of the survey but de-
pendent on the presentation of choices. 

The results of this experiment (n = 73) at four different loca-
tions indicated estimated revenues with Design 2 are 13% to 
149% higher than the estimates for Design 2. On an aggregate 
basis, the revenue increase with Design 2 is 43% over Design 1. 
Chi-Square test indicates that the consistent increase in revenues 
for Design 2 are independent of location of the survey. 
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Table 3 Summary statistics of user choices of bikeshare fare options 

Class Variables 
Fare Choice Set 1 

 
Fare Choice Set 2 

 
DP7 STF8  Total χ2 p  DP7 3DP9 STF8 Total χ2 p  

Gender Female 12 6 18 1.721 0.181 8 2 7 17 1.348 0.509 Male 28 34 62 24 15 21 60 

Income <$35k 34 35 69 0 1 21 11 23 55 2.479 0.289 >$35k 6 5 11 11 6 5 22 
Prior 
user? 

No 30 29 59 0 1 26 12 23 61 0.995 0.608 Yes 10 11 21 6 5 5 16 

Sample 
Location  

UA1 13 11 24 

4.224 0.518 

10 5 10 25 

6.103 0.806 

UNCC2 11 10 21 6 5 7 18 
Clemson3 2 3 5 2 1 4 7 
GMU4 5 10 15 6 4 3 13 
Memphis5 6 2 8 5 1 1 7 
TCNJ6 3 4 7 3 1 3 7 

Overall Sample Total 40 40 80 
  

32 17 28 77 
  

1University of Alabama at Tuscaloosa; 2University of North Carolina at Charlotte; 3Clemson University; 4George Mason University; 5Univer-
sity of Memphis; 6The College of New Jersey 
7 DP: 24-Hour or Day Pass ($8); 8 STF: Single Trip ($2); 9 3DP: 3-Day Pass ($17) 
Interpretation example: At a significance level (α) = 0.05, the p-value of 0.181 indicates that the user choice of fare option is independent of the 

gender of the respondent 
Conclusion: Gender, income, prior usage, and location of the sample have no significant influence on the respondent choices 

 
 

Table 4 Estimated revenues from 100 casual users with each single-trip buyer making dual single trips (DST)  

Location and  
Aggregate Statistics 

Fare Choice Set 1 
 

Fare Choice Set 2 
 Percent  

Increase with 
CS-2  24-hour 

pass ($8)  

 Single 
trips 

($2/trip)  Total  
 24-hour 
pass ($8)  

 3-day 
pass 
($17)  

 Single 
trips 

($2/trip)  Total  
 University of Alabama  $433 $183 $616a $320 $340 $160 $820 33.0% 

 UNC Charlotte  $419 $191 $610 $267 $472 $156 $894 46.7% 
 Clemson University  $320 $240 $560 $229 $243 $229 $700 25.0% 

 George Mason University $267 $267 $533 $369 $523 $92 $985 84.6% 
 University of Memphis  $600 $100 $700 $571 $243 $57 $871 24.5% 

 The College of New Jersey  $343 $229 $571 $343 $243 $171 $757 32.5% 
 Totals at all locations  $400 $200 $600 $332 $ 375 $145 $853 42.2% 

 Mean  $397 $202 $599 $350 $344 $144 $838 40.0% 
 SE  $117 $59 $59 $120 $126 $61 $102  

 Lower 95% CI  $274 $140 $537 $224 $212 $80 $731 36.2% 
 Upper 95% CI  $520 $263 $660 $476 $476 $208 $945 43.1% 

This illustration assumes all users opting for single trips would purchase two single trips at $2 each. Confidence intervals as based on the t-
distribution assumption for the sample. 

a Example calculation: Of the 24 respondents of choice set 1 at University of Alabama, 13 and 11 opted for 24-hr pass and single-trip, respec-
tively. Thus, for this case revenue for 100 users when choosing from CS-1 would be: 100 × [(13 ÷ 24) × $8 per pass + (11÷24) × $2 per 
trip × 2 trips by each user] = $433 + $183 = $616 

5 CONCLUSIONS AND DISCUSSION 

The research shows that, for a given ridership level, changes 
to fare options could result in significant variations in revenues. 
The changes are attributable to bikeshare users’ perception of 
value among available fare options. Statistically significant rev-
enue increases are feasible with a fare-choice set containing an 
additional value-priced option when compared to a binary 
choice set.  

 

Though the range of projected revenue increases attributable 
to value-pricing is rather wide (25%-84%), the experiment un-
derscores the point that the mere introduction of a value-based 
pricing option may have a consistently positive and statistically 
significant impact on revenue. Similarly, the second experiment 
on presentation of fare options to users demonstrates that the 
user’s choice is influenced by the presentation of product menu 
at points of sale, such as websites, kiosks, and mobile apps.  
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Figure 1 Revenues per 100 casual users with and without value-
based price option 

 

 
Figure 2 Revenues per 100 users based on the number of single 

trip fares purchased by users 

 

 
Figure 3  Alternative designs for the web-based presentation of value-

based options to users 
 

 
Table 5 User selection of fare options for two alternate designs 

Location Fare 
Design 1 

  
Design 2 

 
Change in 
Rev. with 
Design 2 n % n % 

1. 

Total 7 100% 6 100% 
 

NS 0 0% 0 0% 
STF 3 43% 2 33% 
DP 1 14% 1 17% 
3DP 3 43% 3 50% 
Rev. $928 $1,050 13% 

2. 

Total 14 % 11 100% 
 

NS 1 7% 4 36% 
STF 8 57% 3 27% 
DP 4 29% 1 9% 
3DP 1 7% 3 27% 
Rev. $464 $591 27% 

3. 

Total 9 100% 11 100% 
 

NS 0 0% 0 0% 
STF 5 71% 4 67% 
DP 3 43% 2 33% 
3DP 1 14% 5 83% 
Rev. $729 $1,817 149% 

4. 

n 6 
 

9 
  

NS 0 0% 2 22% 
STF 3 50% 3 33% 
DP 3 50% 0 0% 
3DP 0 0% 4 44% 
Rev. $500 $822 64% 

All 

n 36 
 

37 
  

NS 1 3% 6 16% 
STF 19 53% 12 32% 
DP 11 31% 4 11% 
3DP 5 14% 15 41% 
Rev. $586 $841 43% 

Survey Locations 
1. TRB Annual Meeting, Washington DC 
2. University of California, Irvine, CA 
3. George Mason University (GMU-1) 
4. George Mason University (GMU-2) 

n: Sample size 
NS: No Selection 
STF: Single Trip ($2) 
DP: 24-Hour Pass ($8) 
MDP: 3-Day Pass ($17) 
Rev.: Revenue/100 Riders 
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5.1 Key Takeaway 
The key takeaway from this research is that a scientific 

method that leverages the concepts of consumer pricing research 
and behavioural economics to set bikeshare pricing could signif-
icantly increase revenues from casual users of bikeshare. 
Changes to fare products can be tested with a simple survey of 
carefully sampled potential users using the methods described in 
this paper.  That is, bikeshare systems across the world could 
use the methodology and/or results of this study in strategizing 
and redesigning product-mix; product-testing and then present-
ing various price options for bikeshare users. For example, five 
of the seven largest bikeshare systems in the USA (Table 1) 
could potentially increase revenues from their casual users by 
simply introducing a multi-day pass.  

It should be noted that the conclusions of this research are 
subject to a few limitations. The respondents in the sample are 
not from diverse population groups. The research found that in-
come has no impact on users’ choice, which is akin to stated 
preference. However, income influence may have been absent in 
the responses as they were based on a hypothetical situation 
which does not actually involve spending money (i.e., a stated 
preference instead of a revealed choice). Though the research 
only shows promise of improving economic sustainability 
through increased revenues, more work is needed in this regard 
for establishing the suitable set of pricing options for a given 
bikesharing service.  
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